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ABSTRACT 

 

Rheology of cement based materials is controlled by the interactions at the particle 

level. The present study investigates the particle interactions and rheological properties of 

cement-based materials in the micro- and macro-scales. The cementitious materials studied 

are Portland cement (PC), fly ash (FA), ground granulated blast furnace slag (GGBFS) and 

densified silica fume (SF).  

At the micro-scale, aside from the forces on particles due to collisions, interactions of 

particles in a flowing system include the adhesion and friction. Adhesion is due to the 

attraction between materials and friction depends on the properties of the sliding surfaces. 

Atomic Force Microscopy (AFM) is used to measure the adhesion force and coefficient of 

friction. The adhesion force is measured by pull-off force measurements and is used to 

calculate Hamaker constants. The coefficient of friction is measured by increasing the 

deflection set-points on AFM probes with sliding particles, thereby increasing normal loads 

and friction force. AFM probes were commercial Si3N4 tips and cementitious particles 

attached to the tips of probe cantilevers. SF was not included in the micro-scale tests due to 

its limiting size when attaching it to the AFM probes. Other materials included in the tests 

were silica, calcite and mica, which were used for verification of the developed test method 

for the adhesion study. The AFM experiments were conducted in dry air and fluid 

environments at pH levels of 7, 8, 9, 11 and 13. The results in dry air indicate that the 

Hamaker constant of Class F FA can be similar to PC, but Class C FA can have a high 

Hamaker constant, also when in contact with other cementitious materials. The results in 

fluid environments showed low Hamaker constants for Class F fly ashes compared to PC and 

also showed high Hamaker constants for PC and Class C fly ash. The results for the friction 

test in dry air indicated that the coefficient of friction of PC is lower than fly ashes, which is 

attributed to the asperities present on the particle surface.  

At the macro-scale, flow of cementitious materials may be in its dry or wet state, 

during transport and handling or when it is used in concrete mixtures, respectively. Hence, 

the behavior of bulk cementitious materials in their dry state and wet form are studied. In the 
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dry state, the compression, recompression and swell indices, and stiffness modulus of plain 

and blended cementitious materials are determined by confined uniaxial compression. The 

coefficients of friction of the bulk materials studied are determined by a direct shear test. The 

results indicate that shape of particles has a great influence on the compression and shear 

parameters. The indices for PC blends with FA do not change with FA replacement, while it 

increases with GGBFS replacement. Replacement with GGBFS slightly decreases coefficient 

of friction, while replacement with FA significantly decreases coefficient of friction. At low 

SF replacement, coefficient of friction decreases. In wet state, unary, binary, ternary and 

quaternary mixes with w/b of 0.35, 0.45 and 0.55 were tested for yield stress, viscosity and 

thixotropy. It is found that fly ash replacement lowers the rheological properties and 

replacement with GGBFS and SF increases rheological properties. 

The distinct element method (DEM) was employed to model particle interaction and 

bulk behavior. The AFM force curve measurement is simulated to validate the adhesion 

model in the DEM. The contact due to asperities was incorporated by considering the 

asperities as a percentage of the radius of the contacting particles. The results of the 

simulation matches the force-curve obtained from actual AFM experiments. The confined 

uniaxial compression test is simulated to verify the use of DEM to relate micro-scale 

properties to macros-scale behavior. The bulk stiffness from the physical experiments is 

matched in the DEM simulation. The particle stiffness and coefficient of friction are found to 

have a direct relation to bulk stiffness.  
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CHAPTER 1. INTRODUCTION 

 

1.1. Background 

Concrete workability is the ease of placing, consolidating and finishing fresh concrete 

and the degree to which it resists segregation. Desirable workability in concrete is essential in 

every step of a project, from manufacturing to transportation to construction. Sufficient 

workability contributes to proper construction, which has an impact to the long-term 

performance of hardened concrete. In recent years, concrete technology has advanced 

dramatically due to the use of numerous supplementary cementitious materials and chemical 

admixtures as well as the development of various new types of concretes, such as self-

consolidating concrete and high performance concrete. Demands for rapid construction, high 

performance, and excellent durability of concrete have been increasing. As a result, there is a 

need for the measurements, predictions, and acceptances of flow or rheological behavior of 

various concretes.  

The rheology of cement-based materials is the quantitative property that describes the 

mixture’s deformation and flow. Recent research has demonstrated that rheology 

characterization allows researchers and engineers to have a fundamental understanding of 

cement-based material flow behavior, to formulate optimal mix design, and to control 

mixture homogeneity during the manufacturing and construction processes (Sobolev, 2004). 

Characterization and control of cement-based material rheological behavior is becoming a 

powerful tool for the concrete industry. 

The rheological behavior of a cement-based material is strongly influenced by 

interparticle forces and spatial particle distribution. At present, there is a wide variation in 

most results from experimental studies on cement and concrete rheological behavior vary 

largely because of different materials investigated, equipment used, and test methods applied 

(Banfill, 2003). In practice, prediction of concrete rheological behavior largely depends on 

the results of trial and error tests and the field engineer’s experience and judgment. Besides 

being time-consuming and expensive, such an experimental approach is also not reliable 
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because of the complexities of the materials and experiments.  An alternative approach is to 

develop computational tools for predictive simulation. 

In the particles suspension simulation, cement-based materials (such as paste, mortar, 

and concrete) are commonly considered as a two-phase material that contains a group of rigid 

particles suspended in a fluid matrix, and continuum approaches and other theoretical 

concepts (such as fluid dynamics, double-layer theory, particle collision and packing 

theories, etc.) can be applied (Lu et al., 2008). Nevertheless, most of these theoretical 

approaches do not permit researchers to understand the concrete flow at an individual particle 

level, thus limiting improvements in concrete mix design. In discrete particle simulation, the 

bulk behavior of concrete flow is described by the characteristics of individual particles and 

the interactions between the particles. Numerical modeling based on the discrete element 

method (DEM) is often used to obtain such microscopic information of the individual 

particles, for which conventional experimental techniques and other simulations are rarely 

practical (Cundall and Strack, 1979). The behavior of a DEM model largely depends on the 

particle contact mechanics, particle shape and size distribution. Although previous DEM 

simulations have demonstrated their ability to describe the overall flow behavior of a fresh 

mortar or concrete mixture, the flow behavior of the materials at a micro- or nano-scale level, 

such as the forces generated in the mortar or concrete system during the aggregate particle 

approach, contact, and separation, has not been well understood.  More importantly, the 

underlying assumptions for the particle movements in the material system have not been 

clarified.  

To address the above-mentioned concerns, an innovative solution is needed for 

optimizing and predicting concrete rheological behavior rationally and effectively. Since the 

behavior of cement-based materials is determined by the complex interplay of inter-particle 

forces and spatial particle distribution, a predictive model that incorporates the fundamental 

physical interactions of the materials is essential. Here, a multi-scale, multiphase approach is 

conducted to study the rheological parameter and behavior of cement based materials.  
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1.2. Objectives 

The goal of this study is obtain a better understanding of the flow behavior of cement-

based materials through multi-scale and multiphase experiments and modeling. The 

objectives of the present research are: 

(1) Utilize atomic force microcopy (AFM) experiments to measure interparticle interactions 

in cementitious materials.  

(2) Study the rheological properties of bulk cementitious materials in their dry state and wet 

form.  

(3) Study rheological behavior of bulk cementitious materials using the distinct element 

method (DEM) with micro-scale data obtained from AFM experiments as input 

parameters 

1.3. Research Approach  

The outline of the research is shown in Figure 1.1. The research was divided into 

three parts. The first part was the study of the micro-scale properties of cement-based 

materials using AFM. The adhesion forces and Hamaker constants of cementitious materials 

were measured in dry air, water and sodium hydroxide solution with pH 8, 9, 11 and 13. The 

coefficients of friction between cementitious materials were also measured in different dry 

and fluid environments.  

The second part was the study of the macro-scale behavior of cementitious materials 

in dry state and paste form. The bulk stiffness and coefficient of friction were determined in 

their dry state, by uniaxial compression and direct shearing. In paste form, the viscosity, yield 

stress and thixotropy were studied. The cementitious materials used in the study were 

ordinary Portland cement, fly ash, ground granulated blast furnace slag and densified silica 

fume. 

The third part of the study was the simulation of bulk behavior using the micro-scale 

properties as input parameter. The simulations were carried out using the distinct element 

method. Simulations were done on single particle adhesion by AFM pull-off deflection and 

compression to determine bulk behavior. 
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.  

Figure 1.1. Outline of research and interrelations of objectives 
 

1.4. Dissertation Organization 

This dissertation is divided into six chapters. Chapter 1 provides the background, 

objectives and the research approach. Chapter 2 is the review of literature. The chapter is 

divided into three sections: micro-scale properties of cementitious materials that affect 

rheology, macro-scale rheological properties of cement-based materials, and simulation of 

cement-based materials using DEM.  

Chapter 3 covers test methods and results of the micro-scale studies using AFM with 

cementitious particles. The studies were on adhesion and friction of cementitious particles in 

dry air and aqueous environments. In the adhesion force measurements, the Hamaker 

constants were computed from the pull-off forces using appropriate contact mechanics 

models, and considering particle asperities and double layer effects. The coefficients of 

friction between cementitious particles were determined in the friction studies. The results 

were discussed based on known theoretical quantities, testing condition and rheological 

implications. 
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Chapter 4 presents the macro-scale testing and properties of bulk cementitious 

materials in dry state and paste form. The methods adopted for compression testing in dry 

state and shear testing in dry and wet state of bulk samples are presented. In the compression 

tests, the bulk density, void ratio, compression, swell and recompression indices and bulk 

stiffness were determined. In the shear testing of dry powders, the coefficients of friction 

were determined. While in paste form, the viscosity, yield stress and thixotropy were 

measured. The test results in dry state and in paste form are discussed and compared. 

Statistical models of the rheological properties of pastes are also presented. 

Chapter 5 presents the DEM simulation of cementitious materials. The modeling 

conditions, assumptions and input data are discussed. The modeling of AFM pull-off 

deflection is presented as verification of cohesion implementation in the DEM program. 

Simulations of compression and its relation to experimental results are discussed. 

Finally, Chapter 6 provides a summary of this research, overall conclusions and 

provides recommendations for future research. 
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CHAPTER 2. REVIEW OF LITERATURE 

 

2.1 Atomic Force Microscopy Cement-based Materials 

AFM is a powerful tool to image surface topography. It has been increasingly used on 

surface imaging of cementitious particles (Demanet, 1995, Bosbach and Enders, 1997, 

Mishraa et al., 2003) and cement hydration and microstructure evolution (Mitchell et al., 

1996, Yang, et al., 2002, 2003, Papadakis, et al., 1999, Mondal, et al., 2006). For the study of 

the rheology of cement-based materials at the micro-scale, the following subsections focuses 

on measurement of adhesion and friction forces with AFM. 

2.1.1 Adhesion Forces Measurement with AFM 

AFM is also used for measurement of force-distance curves and adhesion force 

between materials at different ambient conditions (Cappella and Dietler, 1999, Butt, et al. 

2005). A few researchers have attempted to measure adhesion forces and Hamaker constant 

of cement-based materials.  Uchikawa, et al. (1997) determined the steric repulsive force 

between polished clinker and silicon in solutions with different admixtures. They found that 

the fluidity of fresh cement pastes was correlated to the repulsive forces of their particles. 

Kauppi, et al. (2005) measured the interaction forces between spherical and flat MgO 

particles using an AFM in a solution containing superplasticizer. They discovered that 

superplasticizers contributed to both electrostatic and steric repulsion. Lesko, et al. (2001) 

and Plassard, et al. (2005) evaluated the forces between calcium silicate hydrate (C-S-H) 

layers in different solutions. They reported that in the solution similar to the pore solution of 

a cement paste, the adhesion force between C-S-H layers was approximately 30 MPa and the 

force increased with increasing calcium concentration. 

Force measurements are performed by acquiring force-distance curves using the AFM 

(Butt, et al., 2005). A schematic of a typical force-distance curve is shown in Figure 2.1. In a 

typical measurement, the tip (at the end of the probe) is initially held far from the sample (a). 

It is then brought into contact with the stationary sample using a piezo-motor. As the probe 

approaches the sample, the attractive force gradient of the probe-sample interaction exceeds 
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the normal spring constant at a location close to contact. This causes an instability whereby 

the probe tip snaps into contact with the sample and probe is seen to deflect past the “zero 

force” level (b). As the probe continues to advance, it presses on the sample and further 

deflects to its maximum value (c). Subsequently, the probe is retracted or “withdrawn” away 

from the sample. During this process, the probe keeps in contact with the sample (d) until the 

spring constant overcomes the attractive force gradient that results in the cantilever 

“snapping back” to its undeflected position (e). The deflection of the probe (and hence the 

force obtained by multiplying deflection with probe normal stiffness) is continuously 

recorded as a function of piezo displacement.  

 

 

Figure 2.1. Sketch of a typical force curve 
 

The pull-off force (F) between the two materials tested is calculated from the 

cantilever pull-off deflection (δ) and normal stiffness (k) as:  

 δ=F k  (2.1) 
 

The pull-off deflection, as indicated in Figure 2.1 is the distance from the 

initial/neutral position of the probe to the of the probe tip-sample separation.  
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The pull-off force (F) evaluated from the experiment computed by equation (2.2) may 

be expressed in terms of work of adhesion (W) of the interface and AFM probe tip radius (R). 

Work of adhesion is the decrease in free energy per unit area when an interface is formed 

from two individual surfaces 1 and 2. Depending on the stiffness of the material, the JKR 

model (Johnson, et al., 1971) or DMT (Derjaguin, et al., 1975) for a spherical particle in 

contact with a plane surface applies. The JKR and DMT models are expressed as 

 12π=F c RW  (2.2) 

 

The constant c is 3/2 for the JKR model and is 2 for the DMT model. The work of 

adhesion can be expressed as a function of Hamaker constant (A12) between two contacting 

bodies and cut-off distance (D0). The cut-off distance is the interfacial separation between 

two contacting materials (Israelachvili, 1991).  

 12
12 2

012π
=

A
W

D
 (2.3) 

 

The application of the two models is usually chosen based on the Tabor parameter 

(µT) (Tabor, 1977). The parameter is a function of the probe tip radius, adhesion energy (γ12), 

cut-off distance, elastic modulus of the contacting materials (E) and Poisson’s ratio (ν).  

 
1 32

12
2 3

0

 

*

γ
µ

 
=  
 

T

R

E D
 (2.4) 

 

where E* is the equivalent elastic modulus and E* = ( )1 2 1 2' ' ' '+E E E E  and ( )2' 1 ν= −E E . 

γ12 is the interfacial surface energy, γ12= ( )2
12 024πA D . When µT >5, the JKR model applies, 

and when µT <1, the DMT model applies. 

2.1.2 Friction Force Measurement 

The coefficient of friction at the micro-scale is measured using an AFM, which was 

first by done Mate, et al. (1987) by modifying an AFM to measure both the normal and 

friction forces. Ruan and Bhushan (1994) and Bhushan and Ruan (1994) had presented 
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calibration procedures for converting measured data from a commercial AFM to normal and 

friction forces. They had also compared micro-scale friction data for selected materials with 

Si3N4 tips with macro-scale friction against Si3N4 balls. They found that the micro-scale 

friction was significantly smaller than macro-scale friction of the tested materials. At the 

micro- and nano-scales, it has been observed that the frictional force measured depends upon 

the contact area between the tested material and the applied normal load. The frictional force 

does not vary linearly with normal force in such situations, Karuppiah, et al. (2009). The 

micro-scale friction plays vital role in understanding the flow behavior of bulk materials, 

including grinding and wearing of materials, where particle contacts, plastic deformation, 

micro-friction are treated separately, Jones and Hodges (2004) and Cleary, et al. (2008). 

At the micro-scale, flowing particles will collide. Collision force has a normal and/or 

tangential component. The tangential component of a collision force involves the friction 

forces resulting from the particles that slide against each other. The amount of frictional force 

(f ) is proportional on the normal force (N) and the coefficient of friction (µ) between the 

particles.  

 µ=f N  (2.5) 

 

The normal force between particles depends on the momentum of the particles and 

the weight of the particles for dense flows. The coefficient of friction depends on the 

properties of the material contact surfaces. To quantify the friction force, the coefficient of 

friction of the interested material needs to be determined.  

The test method introduced by Ruan and Bhushan (1994) using friction force 

microscopy is the most commonly used method for determining the coefficient of friction at 

the micro-scale. To measure the friction force using an AFM, the probe is lowered down 

gradually until the tip comes to contact with the sample and the cantilever deflects to apply a 

normal force (N0) between the two contacting materials. The normal force is given by N0 = 

cantilever vertical deflection H0 × normal spring constant k.  

The AFM is engaged in a scanning motion where the probe is moved parallel to the 

cantilever’s long axis. The cantilever deflects due to the sample surface topography and also 

due to the friction force between the probe and the sample surface. The friction force acts in 
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the opposite direction of the probe motion (Figure 2.2a and Figure 2.2c). To maintain the 

deflection of the cantilever to a given value or set-point, the AFM piezo adjusts by retracting 

or extending, thus decreasing or increasing the normal load by ∆N1 or ∆N2, respectively 

(Figure 2.2b and Figure 2.2d). The change in normal load is given by ∆N1 = piezo retraction 

∆H1 × k or ∆N2 = piezo extension ∆H2 × k. 

To calculate for the coefficient of friction (µ), it is first recognized that since the 

cantilever deflection in Figure 2.2b and Figure 2.2d are the same, then, the sum of the 

moments acting about the root of the cantilever at point P are the equal, i.e. 

 ( )( ) ( )( )0 1 0 2( ) ( )− ∆ + = + ∆ −N N L f l N N L f l  (2.6) 

 

The friction force can be solved as 

 1 2( )

2

∆ + ∆
=

N N L
f

l
 (2.7) 

 

The coefficient of friction can be solved with equation (2.5) as 

 1 2

0

( )

2
µ

∆ + ∆
= =

N Nf L

N N l
 (2.8) 

 

L and l are functions of the distance of the probe tip to the root of the cantilever Lc and the 

height of the tip ht, making 

 
cos  

sin cos

θ

θ θ

=

= +

c

c t

L L

l L h
 (2.9) 

 

where θ is the angle between the cantilevers and the sliding surface. 
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a) Additional deflection is caused by friction 

force as the probe slides in the positive y 

direction 

 

 

c) Additional deflection is caused by friction 

force as the probe slides in the negative y 

direction 

 

Figure 2.2. Schematic showing additional bending of cantilever due to friction force when the 

probe slides in the positive y and negative y directions and subsequent piezo adjustment to 

maintain an initial cantilever defle
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a) Additional deflection is caused by friction 

force as the probe slides in the positive y 
b) The effect is cancelled by retract

piezo, thus reducing the normal force

  

c) Additional deflection is caused by friction 

force as the probe slides in the negative y 
d) The effect is cancelled by extending the 

piezo, thus increasing the normal force

Schematic showing additional bending of cantilever due to friction force when the 

probe slides in the positive y and negative y directions and subsequent piezo adjustment to 

maintain an initial cantilever deflection 

 

b) The effect is cancelled by retracting the 

piezo, thus reducing the normal force 

 

d) The effect is cancelled by extending the 

piezo, thus increasing the normal force 

Schematic showing additional bending of cantilever due to friction force when the 

probe slides in the positive y and negative y directions and subsequent piezo adjustment to 



www.manaraa.com

12 
 

2.2 Rheology of Cement Based Materials 

The rheological behavior of a cement-based material is commonly expressed by the 

relationship between shear stress and shear rate of the material under shearing. In its dry 

state, bulk cementitious materials are transported by rail, truck or ship. Pressurized air 

through pipe is commonly used for loading and unloading of the transporting vehicle. The 

design of hoppers (Descher, 1998), silos (Nielsen, 1998), and chutes (Jyotsna and Rao, 1997) 

in an effective and economical way requires a thorough understanding of the various factors 

governing the flow characteristics of granular materials must be obtained (Marcus, et al., 

1990). When cementitious materials are used in concrete, it is mixed with water, aggregates 

and chemical admixtures. The rheological properties of the concrete affect concrete 

construction process, such as its transportation, placing and consolidation, which in turn 

influences hardened properties of the concrete such as uniformity, strength and durability,  

Banfill (2003).  

2.2.1 Granular Flow of Dry Powders 

Factors affecting the flow of dry materials are particle stiffness, mean particle size, 

shape and distribution, bulk and particle density (Littman, et al., 1995, Mills, 2004). Stresses 

increases with increase in particle stiffness at dense granular flows, Campbell (2006). 

Sufficient pressure should be maintained along a pipe for proper transport and to avoid 

blockages. Wall and material friction causes a drop in pressure drop along the pipe. This 

friction effect is being studied for dilute and dense flows (Pan, 1999, Jones and Williams, 

2003 and Makkawi, et al., 2006). Other factors that affect friction such as particle 

degradation and inclination were also being studied (Wilson and Addie, 1997, Carpinlioglu, 

et al., 2002). The angle of repose can give an indication of the flowability of a material. 

When the angle of repose of a material is low, it is considered easily flowing while when it is 

high, it is considered cohesive and difficult to flow. The angle of repose is the angle between 

the horizontal and the natural slope of a heap of the material. For dry fine materials, a 

correlation exists between angle of repose and bulk coefficient of friction measured from a 

direct shear test (Chik and Vallejo, 2005, Ghazavi, et al., 2008). 

Cementitious materials are often packed in bags or stored in barrels or silos. The 

behavior of bulk materials when under storage and transport, such as fluffing, consolidation 
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and ease/difficulty of filling and discharging to/from containers, are affected by its 

compression and shearing properties and its friction with contacting walls (Schulze, 2008). 

These behaviors also depend on particle characteristics such as particle size, size distribution, 

shape and roughness (Gu, et al., 1992). Although millions of tons of cementitious materials 

are used each year, little is known with regards to its bulk flow and storage properties. Many 

problems occur such as bridging, ratholing, flooding or uncontrolled flow and caking, which 

has a negative impact on production efficiency (Maynard, 2004). 

2.2.2 Rheology of Pastes 

Many constitutive models have been developed to represent the relationship, among 

which the Bingham model and Herschel-Bulkley models are the most commonly used for 

cement-based flow because of their simplicity and good representation for the majority of 

concrete mixtures (Ferraris, 1999). The Bingham model is a linear relation between shear 

stress τ, yield stress τ0, plastic viscosity η and strain rate γ� . It is expressed as 

 0τ τ ηγ= + �  (2.10) 

 

The Herschel-Bulkley model is expressed as  

 0τ τ γ= + �
n

K  (2.11) 

 

where K is consistency and n is a constant that measures the amount of shear thinning or 

thickening. These models have been applied to study the flow behavior of cement pastes 

(Atzeni et al., 1985; Papo, 1988; Nehdi and Rahman, 2004) and SCC (de Larrard et al., 

1988). Besides yield stress and viscosity, thixotropy, a property showing the time-dependent 

change in viscosity, is also observed and used for characterizing concrete rheological 

behavior.  

Almost all components of a concrete mixture as well as the concrete manufacturing 

conditions affect rheology of the concrete. Most of these factors have been studied to some 

extent through experimental tests. Many of the studies have been focused on paste and 

mortar due to equipment limitations. Research has shown that the water content, the physical 

and chemical characteristics of cementitious materials, the type, surface texture, angularity, 
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particle size, and volume fraction of aggregate, and the type and dosage of admixtures all 

influence concrete rheological behavior (Hobbs, 1976; Rosquoet et al., 2003; Svermova et 

al., 2003; Vom Berg, 1979; Metha and Monteiro, 1993; Geiker et al., 2002; Badger et al., 

2004; Chia and Zhang, 2004; Golaszewski and Szwbowski, 2004; Lachemi et al., 2004; 

Assaad et al., 2004). 

Some models for predicting concrete rheological parameters have been developed 

with a consideration of concrete composition and mixture proportion (Hu et al., 1995; 

Roshavelov, 2005; De Larrard, 1999). Topcu and Kocataskin (1995) developed a model 

based on a two-phase approach and the law of plastic viscosity. Kennedy proposed the excess 

paste theory and explained its effect on concrete flowability (Kennedy, 1940). Oh et al. 

(1999) investigated and found that an increase in excess paste decreases both yield stress and 

viscosity of concrete. As mentioned previously, most existing studies on cement and concrete 

rheological behavior are experimentally dependent. The experimental results vary largely 

because of different materials investigated, equipment used, and test methods applied.  

To measure the rheological properties of cementitious materials, it is typically loaded 

with an increasing and subsequent decreasing shear rate. A typical loading history is shown 

in Figure 2.3. The shear stress for the applied shear rate is recorded and a typical flow curve 

showing stress vs. shear rate for pastes is shown in Figure 2.4. The paste viscosity and yield 

stress were calculated from the down curve of the flow curve. The down curve follows a 

Bingham model. To calculate for the paste viscosity, a regression line is made. The slope of 

the regression line was the mixture viscosity. The zero intercept of the regression line was the 

calculated yield stress. The typical flow curve in Figure 2.4 shows the up curve higher than 

the down curve. This hysteresis loop was caused by the decrease in the viscosity due to 

colloidal structure breakdown with increasing time of shearing. Therefore, the thixotropy was 

calculated as the area between the up-curve and down-curve. 
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Figure 2.3. Loading history of paste rheology test 

 

 

Figure 2.4. Flow curve of cementitious paste 

 

2.3 Distinct Element Method (DEM) for Cement-Based Materials 

The DEM was first introduced by Cundall and Strack (1979) for rock and granular 

flow simulation. After years of improvement (Campbell and Brennen, 1985; Walton and 

Braun, 1986), it was then used for flow analysis of fresh concrete by Nabeta (1994). Since 

then, the method has been the most successful method in simulating a wide variety of 
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concrete flow conditions including slump, L1-box, U-Box, V-funnel tests and shotcrete 

simulations, both in 2D and 3D models (Chu and Machida, 1996; Chu et al., 1996; Noor and 

Uomoto, 1999; Petersson, 2003; Petersson and Hakami, 2001; Puri and Uomoto, 2002). The 

advantages of DEM are that the scale of observation can be of the same size as the coarsest 

particle, the free surface of particles can be examined in detail, and a study of segregation is 

possible.  

The basic concept in the DEM is the representation of concrete constituents into 

simple, spherical particles, Figure 2.5 and Figure 2.6. Other geometries may be used but 

could greatly increase the complexity of the solution. The particles may be representations of 

the coarse aggregate, fine aggregate, cement particles in concrete, mortar, or paste 

respectively. When the particles are in motion, they may collide and/or rub against each 

other. The contact constitutive model for these moving particles can be described as a 

combination of a spring, a slip and a dashpot as show in Figure 2.6. The DEM parameters are 

commonly determined indirectly by a sphere dragging viscometer (SDV) (Chu et al., 1996; 

Noor and Uomoto, 1999; Puri and Uomoto, 2002).  To make it applicable to fresh concrete, 

an allowance of tension can be added to account for ductility or cohesion of mortar. Figure 

2.7 shows the assumption made by Puri and Uomoto (2002), where coarse aggregate 

particles are coated with mortar. On collision of a pair of the aggregate particles, the mortar 

coating comes into contact first, then followed by the core aggregate particle. During 

separation, the mortar was assumed to be under tension, and breaks upon reaching a limiting 

distance.  

The assumption of the separation behavior of aggregates and mortar has only been 

intuitively based. Though success has been made in modeling the macro behavior of 

concrete, the basic understanding of the micro behavior of its constituent materials still needs 

clarification (during approach, contact and separation). 
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Figure 2.5. Two phase concrete model (Noor and Uomoto, 1999)

Figure 

 

 

Figure 2.7. Consideration of mortar spring in tension using force
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Two phase concrete model (Noor and Uomoto, 1999)

Figure 2.6. Standard contact law in DEM 

 

sideration of mortar spring in tension using force-displacement law by Puri 
and Uomoto (2002) 

 

Two phase concrete model (Noor and Uomoto, 1999) 

 

 

displacement law by Puri 
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The behavior of a DEM model depends on the contact mechanics, particle shape and 

size distribution. Common contact mechanics used are the linear spring–dashpot–slider 

system (Cundall and Strack, 1979) and more detailed models are based on the classical Hertz 

(1882) theory for the normal direction and the Mindlin and Deresiewicz (1953) model for the 

tangential direction. Other contact models are of an elastic-plastic type (Vu-Quoc and Zhang, 

1999). In this case, particles undergo purely elastic collision when the contact force is less 

than a specified yield value. Above the yield value, particles undergo elastic–plastic 

deformation, and the loading–unloading force curve exhibits hysteretic behavior, finishing at 

a non-zero displacement as the repulsive contact force returns to zero.   

Common applications of DEM deal with free flowing or non-cohesive problems 

(Nakamura et al., 2007, Coetzee et al., 2007, Tibor et al., 2005, Hoomans et al., 1996). 

Cohesion models can be applied by using liquid bridge force (Lian et al., 1993), square-well 

potential (Mehrotra et al., 2009), JKR model which extends the Hertzian contact law by 

introducing the work of adhesion per unit contact area (Johnson et al., 1971), and van der 

Waals forces (Moreno-Atanasio et al., 2007, Limtrakul et al., 2007, Zhang et al., 2005). 

For modeling of concrete behavior, the linear spring–dashpot–slider system (Chu and 

Machida, 1996; Puri and Uomoto, 2002) is commonly adopted, with the separation model 

being assumed. Despite the common use of these models, the determination of suitable 

values for the contact parameters such as stiffness, damping coefficient, coefficient of 

restitution are not obvious (Malone and Xu, 2008) and an assessment of the suitability of 

these models for diverse DEM applications is still open (Di Renzo and Di Maio, 2004).  
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CHAPTER 3. ADHESION AND FRICTION OF CEMENTITIOUS MATERIALS AT 

THE MICRO-SCALE 

 

3.1 Introduction 

Several factors at the level of the particles affect the flow behavior of cement-based 

materials. These are particle adhesion, friction, size, shape, and spatial and size distribution. 

Adhesion force between particles tends to increase the stresses (Aarons and Sundaresan, 

2006) and resistance to shearing (Rognon, et al., 2008) in a flowing system. The friction 

between particles acts in the opposite direction of the motion of the particles, thus increase 

the difficulty to flow. Hu (2005) studied the effects of fine aggregate size on viscosity and 

yield stress of cementitious mortars. His results showed that increasing the size of fine 

aggregates while maintaining the same volume fraction decreases viscosity and yield stress. 

This may be due to increase in particle spacing and reduction in number of particle in the 

system that the probability of collisions between particles is decreased. Hu also found that a 

well graded particle size distribution produces a lower viscosity and yield stress compared to 

uniform sized particles. The small size of silica fume particles (~100nm) is also often 

attributed to increase in viscosity and yield stress because of it high surface area compared to 

its volume that it requires more water to lubricate particle surfaces (Ferraris, et al., 2001). As 

with shapes, it has been widely accepted that a spherical shape, such as in fly ashes, improves 

flowability due to its ability to roll over one another (Ramachandran, 1995). Compared to 

other geometries, a sphere also has the least surface area for a given volume, thereby 

reducing water demand (Ploya and Szego, 1951). Other contributing factors are the 

rheological properties of the suspending fluid and its physical and chemical interactions with 

cementitious materials, such as the effects of chemical admixtures.  

This chapter discusses two factors affecting rheological properties of cement-based 

materials at the micro-scale, adhesion and friction of cementitious materials. The study 

includes three parts. The first part is on the development of a methodology for measuring the 

adhesion forces and calculation of the Hamaker constant between cementitious materials and 

a commercially available AFM probe. The second part is the measurement of adhesion forces 
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between cementitious particles. The third part is the determination of the coefficient of 

friction between cementitious materials. 

3.2 Materials 

Six types of commercially available cementitious materials were used in the adhesion 

and friction studies at the micro-scale, ordinary Portland Cement (PC), Ground Granulated 

Blast Furnace Slag (GGBFS), Class C Fly Ash (CFA), and three Class F Fly Ashes (FFA1 to 

FFA3). Reference materials with known Hamaker constants were also used in the 

development and verification of the validity of the methodology for measuring adhesion 

forces. The reference materials used were mica, silica, and calcite. Silica and calcite are 

commonly found in concrete as aggregate, and their Hamaker constants have been previously 

studied, Bergstrom (1996). Different from silica and calcite that have granular particles, mica 

has a sheet structure and is commonly used in AFM-based adhesion and friction studies 

(Eastman and Zhu, 1996, Hu, et al., 1995 and Carpick and Salmeron, 1997) and can help 

verify the test methodology developed. The chemical properties of the cementitious materials 

are given in Table 3.1.  

Scanning electron microscope (SEM) micrographs of the cementitious materials are 

shown in Figure 3.1. PC and GGBFS have angular particles due to the grinding during their 

production, while the fly ashes have rounded edges and spherical shaped particles, which are 

formed by fusing in suspension of exhaust gases. 
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Table 3.1. Chemical components (%) of cementitious materials 

 Material 

 PC CFA GGBFS FFA1 FFA2 FFA3 

Na2O 0.1 1.64 0.29 1.08 2.63 1.53 

MgO 3.07 4.87 9.63 1.73 2.44 1.27 

Al2O3 4.24 17.68 8.54 27.52 23.63 19.63 

SiO2 21.16 31.92 36.5 54.87 49.30 43.52 

SO3 2.63 1.68 0.6 0.36 1.91 6.24 

K2O 0.66 0.43 0.44 4.36 1.22 2.31 

CaO 64.39 30.9 41.1 1.70 11.56 11.41 

Fe2O3 3.07 6.54 0.83 6.92 5.83 12.80 

Others 0.68 4.34 2.07 1.46 1.48 1.29 

 

 

Figure 3.1. SEM micrograph of cementitious powders 

 

3.3 Measuring Hamaker Constant of Cementitious Materials 

The following section presents the measurement of adhesion and determination of 

Hamaker constant of commercially available cementitious materials using AFM. The method 
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contains two steps: (1) measuring the adhesion force between the tested material and a 

selected probe using AFM and (2) calculating the Hamaker constant of the tested material 

from the measured adhesion force using established contact mechanics models. The materials 

used were PC, GGBFS and the reference materials silica, calcite and mica. The adhesion 

force measurements are performed in both dry air and water.  

3.3.1 Adhesion Force Measurement  

Sample Preparation  

All materials investigated, except for mica, were in a powder form. Since mica has a 

thin sheet structure, it only needed to be freshly cleaved before testing. The tested material 

was first mixed with a two-part fast setting epoxy at a powder-to-epoxy ratio of 1:3 by 

weight. After mixing, the sample was placed on a glass slide and cured at 80º C for 8 hours. 

After cooling down, the sample was sanded flat and the surface of the sample was polished 

with a set of sandpapers from coarse to fine grits of 150, 400, 800, 1000 and 2000. During 

polishing, the sample was blown with pressurized line air to prevent dust accumulation. After 

polishing, the samples were cleaned with compressed nitrogen gas.  

Figure 3.2 illustrates representative 5 µm × 5 µm images of the polished samples 

obtained using atomic force microscopy in the standard contact mode. The roughness of the 

polished samples could influence the results of the adhesion force measurements. A high 

roughness of a sample can change the contact area and thus affect the adhesion 

measurements. Therefore, the root mean square (RMS) surface roughnesses of the resulting 

surfaces were evaluated. The RMS roughnesses of five polished materials were determined 

and their average RMSave are given in Figure 3.2. The results indicate that the examined 

sample surfaces had an RMS roughness ranging from 9.5 to 37.5 nm for a 5 µm × 5 µm scan. 

Among surfaces scanned, the calcite sample had the highest RMS, while the PC had the 

lowest RMS values.  
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Silica, RMSave = 18.6nm Calcite, RMSave = 30.6nm 

  
PC, RMSave = 11.2nm GGBFS, RMSave =19.8nm 

 

Figure 3.2. Scanned images from the surface of the sandpaper polished samples with average 

roughness values 
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AFM Test Setup 

The AFM used was the model Dimension 3100, Nanoscope IV of Veeco Instruments, 

CA, and the test set up is 

nitride (Si3N4) probes were used.

Figure 3.3. Schematic of pull

 

The AFM measurements

used for the air environment, and Milli

When a test was performed in water, both the polished powder material and

completely submerged in the water. 

To assess the pull-off force, 

normal stiffness of each probe used in the present study was determined according to the 

method outlined by Torii et al

of 0.164 and 1.28 N/m were employed. The probes used in the present study had normal 

stiffness ranging from 0.16 to 0.74 N/m with a deviation of 1.2% from the average.

The amount of pull-off force mea

of the probe tip, which directly impacts the contact area. AFM probe tips have a parabolic 

shape and the vertex is defined by a spherical radius

1996). The probe tip was imaged to determine its radius with a diffraction grating TGT1 
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The AFM used was the model Dimension 3100, Nanoscope IV of Veeco Instruments, 

CA, and the test set up is shown in Figure 3.3. Standard commercially available silicon 

) probes were used. 

      

 

Schematic of pull-off deflection measurement and set up for test

measurements were conducted in both dry air and water. Dry N

used for the air environment, and Milli-Q ultrapure water was used as the water environment. 

When a test was performed in water, both the polished powder material and

completely submerged in the water.  

off force, the normal stiffness of the probes must be known. The 

normal stiffness of each probe used in the present study was determined according to the 

method outlined by Torii et al. (1996). Two reference probes with a known normal stiffness 

of 0.164 and 1.28 N/m were employed. The probes used in the present study had normal 

stiffness ranging from 0.16 to 0.74 N/m with a deviation of 1.2% from the average.

off force measured with AFM is also dependent on the geometry 

of the probe tip, which directly impacts the contact area. AFM probe tips have a parabolic 

shape and the vertex is defined by a spherical radius (Wilson, et al., 1996 and Carpick, et al., 

p was imaged to determine its radius with a diffraction grating TGT1 

The AFM used was the model Dimension 3100, Nanoscope IV of Veeco Instruments, 

Standard commercially available silicon 

 

off deflection measurement and set up for test in water  

were conducted in both dry air and water. Dry N2 gas was 

Q ultrapure water was used as the water environment. 

When a test was performed in water, both the polished powder material and probe were 

normal stiffness of the probes must be known. The 

normal stiffness of each probe used in the present study was determined according to the 

. Two reference probes with a known normal stiffness 

of 0.164 and 1.28 N/m were employed. The probes used in the present study had normal 

stiffness ranging from 0.16 to 0.74 N/m with a deviation of 1.2% from the average. 

sured with AFM is also dependent on the geometry 

of the probe tip, which directly impacts the contact area. AFM probe tips have a parabolic 

(Wilson, et al., 1996 and Carpick, et al., 

p was imaged to determine its radius with a diffraction grating TGT1 
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from NT-MDT, Switzerland, as shown in Figure 3.4a. From the image, perpendicular 

sections were obtained. The image cross-section was fitted with a curve to get a radius of 

curvature, Figure 3.4b-c. The radius of the probe tip was the average of the radius from 

perpendicular sections. For each probe used, scans were taken from three grating tips. The 

variation in radius measurement for a single probe was within 13.5% of the average.  

 
a) AFM image of Si3N4 tip obtained using a tip characterization grating 

  
b) Cross section of tip along x direction c) Cross section of tip along y direction 

 
Figure 3.4. Image of Si3N4 tip using AFM and parabolic curve fit of tip scan data points along 

the x and y directions 
 

Force Measurements 

Force measurements are performed by acquiring force-distance curves using the 

AFM, Butt, et al. (2005). A schematic of a typical force-distance curve is shown in Figure 
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3.5. In a typical measurement, the tip (at the end of the probe) is initially held far from the 

sample (a). It is then brought into contact with the stationary sample using a piezo-motor. As 

the probe approaches the sample, the attractive force gradient of the probe-sample interaction 

exceeds the normal spring constant at a location close to contact. This causes an instability 

whereby the probe tip snaps into contact with the sample and probe is seen to deflect past the 

“zero force” level (b). As the probe continues to advance, it presses on the sample and further 

deflects to its maximum value (c). Subsequently, the probe is retracted or “withdrawn” away 

from the sample. During this process, the probe keeps in contact with the sample (d) until the 

spring constant overcomes the attractive force gradient that results in the cantilever 

“snapping back” to its undeflected position (e). The deflection of the probe (and hence the 

force obtained by multiplying deflection with probe normal stiffness) is continuously 

recorded as a function of piezo displacement. The velocity of the probe for the whole process 

is 1.0×10-6 m/s. 

 

 

Figure 3.5. Sketch of a typical force curve 

 

The pull-off force (F) between the two particles tested was calculated from the 

cantilever pull-off deflection (δ) and normal stiffness (k) as: 

 δ=F k  (3.1) 
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The pull-off deflection (δ), as indicated in Figure 3.5 is the distance from the 

initial/neutral position of the probe to the of the probe tip-sample separation.  

To start the test measurements in dry air, the AFM chamber was closed and purged 

with N2 gas to reach experimental conditions of RH (relative humidity) ≤ 8 % to eliminate 

the effects of humidity on the measured forces. To test the samples in water, a droplet of 

water was placed on the polished sample surface. The droplet was then approached by the 

probe until it was fully submerged. When both the probe and polished particle were 

completely submerged in water, the probe approached the particle until it contacted and it 

was then pulled off from the particle in the same manner as the test in air. 

For each material (reference or cementitious materials) tested under each environment 

(in air or water), five particles on a polished sample were selected. On each particle, 5 

locations (1µm apart) were chosen. For each location, 3 measurements were recorded. Thus, 

a total of 75 measurements were taken for each material tested under each environmental 

condition. 

Results from Force Measurements 

 All inter-particle forces measured are at the nano-Newton (nN) level. Figure 3.6 

shows typical force curves for measurements conducted in air. The negative force 

corresponds to attraction and a positive force corresponds to repulsion. The slope of the 

repulsive region and the pull-off force varies because it depends on the properties of the 

contacting materials and geometry of the probe tips. Based on contact mechanics models, it is 

expected that as the adhesion force and the radius of the probe tip increases, the pull-off force 

increases. 
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Silica with Si3N4 Calcite with Si3N4 

  
PC with Si3N4 GGBFS with Si3N4 

 

Figure 3.6. Typical force curves measured from tested materials and probe (Si3N4) in air 

 

Typical force curves for measurements conducted in water are shown in Figure 3.7. 

The jump-to-contact between the probe and a particle was not seen in the approach part of 

the curve that resulted from measurement in water. This is attributed to the double layer 

effects of the tested materials that typically exist in water.  
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Silica with Si3N4 Calcite with Si3N4 

  
PC with Si3N4 GGBFS with Si3N4 

Figure 3.7. Typical force curves measured from tested materials and probe (Si3N4) in water 

 

As shown in Figure 3.8, the double layer refers to two parallel layers of charge on the 

surface of the submerged particle. The first layer is a compact layer that is made of absorbed 

ions due to chemical interaction. The second layer is a diffuse layer composed of ions 

attracted to the surface charge, Lyklema (2005). Because of the double layer, a repulsive 
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force is exerted on the probe tip, which tends to reduce the jump

probe when compared with the interaction in air. 

 

Figure 3.8. Schematic of double layer formation on the surface of a submerged material

Figure 3.9. Distribution of pull
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force is exerted on the probe tip, which tends to reduce the jump-to-contact tendency o

probe when compared with the interaction in air.  

 

Schematic of double layer formation on the surface of a submerged material

Distribution of pull-off forces for different materials tested

of the calculated pull-off forces in air is shown in 

lines above and below the mean identify one standard deviation of the data. It i

exhibits two distinct values of pull-off forces (indicated as group A and group B). The force 

of Group A was about 56.4 nN and Group B was around 17.9 nN. As explained later, this is 

most likely due to the different phases in the particles of Portland cement, and the two 
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off forces for different materials tested 

off forces in air is shown in Figure 3.9. The 

lines above and below the mean identify one standard deviation of the data. It is noted PC 

off forces (indicated as group A and group B). The force 

of Group A was about 56.4 nN and Group B was around 17.9 nN. As explained later, this is 

rtland cement, and the two 
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groups’ forces were also observed in the tests in water.  Table 3.2 gives the mean pull-off 

force calculated in both air and water.  

 

Table 3.2. Pull-off forces of materials interacting Si3N4 with in air and water (nN) 

Material In Air In Water 

Mica 50.70±0.68  

Silica 14.66±0.57 2.47±0.27 

Calcite 10.19±0.55 1.90±0.46 

PC (Group A) 56.42±2.94 6.39±2.28 

      (Group B) 17.91±0.67 1.11±0.11 

GGBFS 4.06±0.09 2.77±0.58 

 

3.3.2 Hamaker Constant Determination  

Work of Adhesion  

The pull-off force (F) evaluated from the experiment and equation  (3.1) may be 

expressed in terms of work of adhesion (W) of the interface and AFM probe tip radius (R). 

Work of adhesion is the decrease in free energy per unit area when an interface is formed 

from two individual surfaces 1 and 2. The tested material will be referred to with subscript 1 

and the silicon nitride probe with subscript 2. Depending on the stiffness of the material, the 

models by Johnson, Kendall and Roberts, (1971, JKR) or by Derjaguin, Muller and Toporov 

(1975, DMT) for a spherical particle in contact with a plane surface applies. The JKR and 

DMT models are expressed as 

 12π=F c RW  (3.2) 

 

The constant c is 3/2 for the JKR model and is 2 for the DMT model. The work of 

adhesion can be expressed as a function of Hamaker constant (A12) between two contacting 

bodies and cut-off distance (D0). The cut-off distance is the interfacial separation between 

two contacting materials, Israelachvili (1991).  
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 12
12 2

012π
=

A
W

D
 (3.3) 

 

The application of the two models is usually chosen based on the Tabor parameter 

(µT), Tabor (1977). The parameter is a function of the probe tip radius (R), adhesion energy 

(γ12), cut-off distance (D0), elastic modulus of the contacting materials (E) and Poisson’s ratio 

(ν).  

 
1 32
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 

T

R

E D
 (3.4) 

 

where E* is the equivalent elastic modulus and E* = ( )1 2 1 2' ' ' '+E E E E  and ( )2' 1 ν= −E E . 

γ12 is the interfacial surface energy, γ12= ( )2
12 024πA D . When µT >5, the JKR model applies, 

and when µT <1, the DMT model applies. In the present study, the average probe tip radius 

was 35 nm and the cut-off distance was assumed as 0.165 nm. The Tabor parameters of mica, 

silica, and calcite interacting with a silicon nitride probe were calculated and are listed in 

Table 3.3. Since the calculated µΤ values were all much less than 1, use of the DMT model is 

appropriate. 

 

Table 3.3. Reference material properties 

Material E (GPa) ν 
A12 (×10-20 J) µΤ 

air water air water 

Mica 70.7 0.25 12.80 2.45 0.20 0.07 

SiO2 72.4 0.17 10.38 1.90 0.18 0.06 

CaCO3 75.0  0.30a 12.90 2.53 0.20 0.07 

Si3N4 280.0 0.20     

aassumed value 

 

For the cementitious materials studied, their elastic modulus, Poisson’s ratio and 

Hamaker constants in interaction with silicon nitride are unknown. Thus, their µΤ values 
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cannot be determined. Therefore, the Hamaker constants resulting from both JKR and DMT 

models are presented in this paper.  

Random Errors from Experimental Measurements  

The Hamaker constants (A12) of the materials tested with their interaction with silicon 

nitride can be estimated by combining Equations (3.1), (3.2), and (3.3). The resulting 

relationship is 

 
2
0

12

3  for JKR model 12 2,      
   2  for DMT model 

δ
= =

D k
A c

cR
 (3.5) 

 

Equation (3.5) expresses that the Hamaker constant (A12) is a function of three 

parameters (δ, k, and R) that are obtained from experimental measurements. We therefore 

report the Hamaker constant as 

 12 12= ±
A

A A u  (3.6) 

 

where, 12A  is the calculated Hamaker constant based on the mean value as expressed in 

Equation (3.7) 

 
2
0

12

12 δ
=

D k
A

cR
 (3.7) 

 

and uA is the 95% uncertainty due to combined random errors in the individual 

measurements. 

 
0
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 = + + +       

∂ ∂ ∂ ∂        
A D k R

A A A A
u u u u u

D k R
 (3.8) 

 

0
,  ,   and δD k R

u u u u  are the individual uncertainties resulting from measurements of 

D0, δ, k and R, respectively. The instrument error was calculated to be 61.0 picometer, SBO 
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(2010), which is relatively small compared to random errors and are not included in the 

analysis.  

Different values of D0 have been reported for various materials. Plassard, et al. (2005) 

used 0.2 nm for the interaction of silica with mica, calcite or gypsum. Bhattacharya, et al. 

(2008) suggested that D0 for polymers might vary from 0.165 to 0.185. Matsuoka, et al. 

(2010) reported that D0 could be as low as 0.132 nm. Israelachvilli (1991) recommended the 

mean value of 0D  used in the calculation of interfacial surface energy as 0.165 nm. Using 

this value, he obtained results with an accuracy of 10-20% for most materials. We therefore 

assume the uncertainty of D0 as ±0.10 0D . 

As shown in Table 3.4 and Table 3.5, the uncertainty for the measurements of the 

pull-off deflection (δ), probe stiffness (k) and probe tip radius (R) were based on the 95% 

confidence interval of the measurement. The random error in the pull-off deflection was from 

75 sample measurements in each material. The variation in the measurement of the cantilever 

stiffness was based on the data from measurements with two reference cantilevers.  

 

Table 3.4. Mean and uncertainty values of measurements in air 

 Mica Silica Calcite PC (A) PC (B) GGBFS 

δ (nm) 104.54±1.40 30.23±1.17 21.02±1.14 116.33±6.06 36.93±1.38 20.29±0.46 

k (N/m) 0.485±0.006 0.485±0.006 0.485±0.006 0.485±0.006 0.485±0.006 0.200±0.002 

R (nm) 76.98±10.39 19.70±2.66 19.70±2.66 38.30±5.17 38.30±5.17 12.84±1.73 

 

Table 3.5. Mean and uncertainty values measurements in water 

 Silica Calcite PC (A) PC (B) GGBFS 

δ (nm) 3.57±0.395 8.02±1.96 28.9±10.29 5.02±0.50 13.6±2.86 

k (N/m) 0.693±0.008 0.237±0.003 0.221±0.003 0.221±0.003 0.204±0.003 

R (nm) 20.60±3.86 30.22±2.90 36.12±5.17 36.12±5.17 57.88±8.29 

 

Another aspect of water exposure and phase formation is the potential for changes in 

surface roughness.  Drastic changes in roughness can significantly alter the contact area and 
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contribute to large errors in the obtained constants.  To determine the change in the surface 

roughness of the tested PC samples due to exposure to water, the RMS roughness of a 

polished PC was measured before and after 45 minutes of wetting. The results showed that 

the change is less than ±10 percent. This amount of change in the surface roughness would 

have negligible impact on the contact area and test results. An example of a PC surface 

before and after wetting is shown in Figure 3.10. 

 

  

 

PC before wetting PC after wetting for 45 minutes  

 
Figure 3.10. 5×5 µm AFM surface scan of polished Portland cement particles before and 

after wetting for 45 minutes 
 

Hamaker Constants in Air  

With consideration of the random errors in the experimental measurement, the 

Hamaker constants of the reference and cementitious materials with its interaction with 

silicon nitride (the probe) in air are given in Table 3.6.  
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Table 3.6. Hamaker constants A12 of tested materials interacting with 
Si3N4 in air (×10-20 J) 

Tested 
Material 

DMT JKR Reference 

Mica 10.76±2.60  12.80 

Silica 12.16±2.97  10.38 

Calcite 8.45±2.09  12.90 

PC (Group A) 24.06±5.95 32.08±7.93  

      (Group B) 7.64±1.87 10.19±2.49  

GGBFS 5.15±1.25 6.88±1.67  

 

The table shows that the values determined by the present method for reference 

materials studied are consistent with those published by previous researchers. Since the 

Tabor parameter µT <1, only the DMT model was used. The DMT model is well suited for 

mica and silica, but it resulted in a lower Hamaker constant for calcite when compared with 

the value published by previous researchers. We attribute the difference to the relatively high 

RMS of the sample, which was 30.6nm, while the RMS of mica, silica and cementitious 

materials studied were below 20nm. The contact models assume contact between smooth 

surfaces. Our results suggest they provide meaningful results even for surfaces with RMS 

values < 20 nm (5 µm scan). 

Because of the two groups of pull-off forces, Table 3.6 shows the corresponding two 

values of Hamaker constants of PC. The Hamaker constant of GGBFS is lower than that of 

PC. The difference in the Hamaker constant values obtained from the two models (DMT and 

JKR) is not significant for the cementitious materials. 

Hamaker Constants in Water 

Due to the effect of the double layer formed in the materials tested in water, a 

repulsive force is exerted on the probe tip. Thus, the Hamaker constant cannot be directly 

computed. Rather, we refer to the computed value from Equation (3.6) as an “effective” 

Hamaker constant. Figure 3.11 and Figure 3.12 shows the force interaction curves (Cappella 

and Dietler, 1999) for tested reference and cementitious materials with Si3N4 probe in water 

with respect to the tip separation from the sample surface, respectively. It can be observed in 
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the figure that most of the materials tested exhibited a repulsive long range force. Consistent 

with the results in air, PC showed two different groups of interaction curves labeled as PC(A) 

and PC(B). PC(A) does not have a repulsive regime which indicates a long range adhesive 

property.  

The electric double layer on the surface of a material in water can be influenced by 

the ionic strength of the liquid (Pendersen and Bergström, 1999 and Ferrari, et al., 2010). For 

the case of calcite, its dissolution will change the ionic charge in the liquid and affect the 

double layer characteristics. The effects of ionic charge of the liquid on the double layer and 

interparticle force of commercially available cementitious materials is of interest and is part 

of a study currently being conducted.  

 

 

Figure 3.11. Force interaction curves for tested reference materials with Si3N4 in water 
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Figure 3.12. Force interaction curves for tested cementitious materials with Si3N4 in water 
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Table 3.7. Effective Hamaker constants of tested materials interacting with 
Si3N4 in water (×10-20 J) 

 DMT JKR Reference 

From Direct Measurement (A132)* 

Silica 1.96±0.58  1.90 

Calcite 1.03±0.34  2.53 

PC (Group A) 2.89±1.25 3.85±1.67  

      (Group B) 0.50±0.13 0.67±0.18  

GGBFS 0.78±0.25 1.04±0.71  

Derived with Equation (3.9) (A131)* 

PC (Group A) 1.72±1.49  1.60 

      (Group B) 0.05±0.03   

GGBFS 0.12±0.09   

*subscripts 1, 2, 3 indicates the sample material, Si3N4 and water, respectively 

 

The computed effective Hamaker constants in water are given in Table 3.7. It can be 

noted that the effective Hamaker constant of silica in water is still close to that reported in the 

previous study, while the effective Hamaker constant of calcite is much lower than that 

reported in the previous study. This is probably related to the relatively high dissolution of 

calcite in water, which enhances the double layer effect. Although much lower than those 

measured in air, the Hamaker constant values of PC measured in water can again be divided 

into two groups. The Hamaker constant values of GGBFS measured in water is also 

relatively lower than the reference materials. The values obtained for the two contact models 

(DMT and JKR) for both PC and GGBFS are not significantly different. 

Energy Dispersive X-ray Spectroscopy (EDS) was employed to determine the 

properties of the tested sample. Figure 3.13 shows the element map of polished PC with an 

epoxy matrix. The sample was wetted for 45 minutes, which was the duration of testing. The 

map shows the presence of different phases in the cement by the distribution of calcium, 

silicon, aluminum and iron in the particles. Analysis of sample at different points in particles 

indicated the presence of unhydrated C3S and C2S.  
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Figure 3.13. Element map of polished Portland cement particles in epoxy that was wetted for 

45 minutes (bright/dark regions indicates presence/absence of the element) 

 

In the work conducted by Flatt (2004), a method of determining the approximate 

Hamaker constants of the different phases of partially hydrated cement in water was 

introduced. Based on this work, the Hamaker constants were approximately 1.6×10-20J for 

C3S, 0.055×10-20J for ettringite, and 0.20×10-20J and 0.70×10-20J for C-H-S with and without 

nonstructural water, respectively. It is noted that the unhydrated cement compound C3S had 

a much higher Hamaker constant than cement hydration products, such as ettringite.  

To compare results from the present study with that from Flatt for PC in water, the 

Hamaker constant of PC phases can be estimated as follows:  

 / =PC Si3N4 Si3N4 PCA A A  (3.9) 

 

Hamaker constant of silicon nitride in water (ASi3N4) is equal to 4.85×10-20J, 

Bergstrom, 1996. Taking two values of PC from Table 3.7 (DMT) as APC/Si3N4, the Hamaker 

constants of PC (APC) obtained from equation (3.9) are 1.72±1.49×10-20J for Group A and 
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0.05±0.03×10-20J and for Group B. The Hamaker constant derived from Group A is similar to 

the Hamaker constant estimated by Flatt for C3S, which is present in the wetted sample 

based on the EDS analysis. This comparison further suggests that the present test method for 

determining the Hamaker constant is valid and can be used to differentiate phases in 

cementitious materials, provided that the different Hamaker constant values of the phases are 

larger than the uncertainty values. Further examination may be needed for the Hamaker 

constant from Group B when considering the values from Flatt (2004) and the EDS analysis. 

The Hamaker constant for GGBFS (AGGBFS) can also be computed using the same method, 

and is equal to 0.12±0.09×10-20J. 

3.4 Particle-Particle Adhesion 

This section presents the measurement of adhesion forces between cementitious 

particles by applying the developed method in the previous section to particles affixed on a 

slide and a particle attached to the tip of an AFM probe. The materials used are the six 

cementitious materials mentioned in Section 3.2. The tests were done in dry air, water and 

sodium hydroxide solution with varying pH. 

3.4.1 AFM probes and sample preparation 

AFM probes were prepared by attaching PC and fly ash particles to the ends of AFM 

cantilevers. Figure 3.14 shows AFM probes attached with a PC particle and fly ash particles 

on their tips. The normal stiffness of the cantilever used ranged from 0.17 to 0.39 N/m, which 

was determined using the reference cantilever method proposed by Torii, et al. (1996).  
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a) PC tip viewed from end of cantilever b) CFA tip viewed from top of cantilever 

  
c) FFA1 tip d) FFA2 tip 

 

 

e) FFA3 tip  

Figure 3.14. SEM images of PC and fly ash particles attached to the end of the 

rectangular AFM cantilever 
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Six sets of microscope slide samples were prepared, PC, CFA, FFA1 to FFA3 and 

GGBFS. PC and GGBFS were mixed with fast setting epoxy, adhered on glass slides, and 

then polished to make a flat surface as described in Section 3.3.1, while the fly ashes were 

adhered to a glass slide with a thin film of UV cured epoxy. The AFM scans of the sample 

surfaces are shown in Figure 3.15. The scan sizes were 5×5 µm and the average RMS 

roughness are from five particles.  

 

  

PC, RMSave = 11.2nm GGBFS, RMSave =19.8nm 

 
 

CFA, RMSave =28.3nm FFA1, RMSave=16.2nm 

  

FFA1, RMSave=21.9nm FFA1, RMSave=25.3nm 

Figure 3.15. AFM scanned image of the sample surfaces, along with RMS roughness 
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3.4.2 Adhesion Forces and Hamaker Constant 

The adhesion forces of the cementitious materials were measured in dry air and water, 

similar to Section 3.3.1. In addition, measurements were also made in a solution of sodium 

hydroxide with pH values of 8, 9, 11 and 13. The change in pH value of the surrounding fluid 

may change the adhesion force between particles, and was thus tested. In the study conducted 

by Plassard, et al. (2005) on calcium silicate hydrate (C-S-H), it was found that an increase in 

pH value increases C-S-H cohesion.  

Adhesion force measurements were performed in the following combinations: PC-

PC, PC-GGBFS, CFA-PC, CFA-GGBFS and CFA-CFA, FFA1-FFA1, FFA2-FFA2 and 

FFA3-FFA3. The first symbol denotes the probe tip while the second denotes the sample 

fixed on the slide. The testing sequence for adhesion and friction testing is in the order given 

in Table 3.8.  

Table 3.8. Test sequence using cementitious particle probe 

No Test type Environment 

1 adhesion dry air 

2 friction dry air 

3 adhesion pH 7,8,9,11,13 

4 friction pH 7,8,9,11,13 

 

The probe tips were scanned before and after testing. To do this, a commercial Si3N4 

AFM probe was glued to a slide with the tip facing upward. The probe tips were then 

scanned on the inverted Si3N4 tip. Samples of probe tip scans from the different tips are 

shown in Figure 3.16. Friction force testing was done immediately after the adhesion force 

measurements, thus the probe tip images that were taken after testing in solution were after 

friction force measurements. As seen, there is only a slight change in tip morphology after 

testing. Friction testing is discussed in the next section. 
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PC before testing PC after testing in solution 

  
CFA before testing CFA after testing in solution 

  
FFA1 before testing FFA1 after testing in solution 

  
FFA2 before testing FFA2 after testing in solution 

  
FFA3 before testing FFA3 after testing in solution 

Figure 3.16. AFM scanned image of the AFM probe tips before and after testing 
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From the pull-off force measured in the tests, the Hamaker constants were calculated 

using the DMT model of Equation (3.6). The contact radius was calculated to consider 

multiple asperity contact by an equivalent area method, thus 

 ( )
2

2

1=
= ∑

n

eq ii
R R

.
 (3.10) 

 

The asperities were identified by peak analysis using the software Scanning Probe 

Image Processor (Image Metrology, 2003). The asperities were peaks of the scanned particle. 

The radius of each asperity was measured.  

  
a) Asperities on Portland cement b) Asperities on fly ash 

Figure 3.17. Asperities encircled on particle tips attached to AFM probes 

 

The computed Hamaker constants in dry air are shown in Figure 3.18, and the 

computed Hamaker constant in water (pH 7) and sodium hydroxide solution (pH 8, 9, 11 and 

13) Figure 3.19. In the tested materials PC, FFA2 and FFA3 have similar Hamaker constant. 

The Hamaker constants between dissimilar materials were higher that the individual 

materials. This may be due to the large difference in the interatomic distance D0 between 

similar and dissimilar materials. It should be noted that D0 was assumed to be the same for all 

materials because it was not measured in the present method. There was no specific trend in 

change in Hamaker constant with pH. The Hamaker constant of PC ranges from 0.05 to 0.12 

×10-20J. The Hamaker constants of fly ashes are generally lower than PC at high pH levels 

and decreases at the pH of 13. Similar to the tests in air, the Hamaker constant of CFA-PC in 

water is higher than PC-PC and CFA-CFA. A higher Hamaker constant indicates a higher 
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van der Waals adhesion force. A higher adhesion force would increase yield stress and 

viscosity. Based on the relative values Hamaker constants of the tested materials, there will 

be additional viscosity and yield stress because of van der Waals force when CFA is added to 

PC due to CFA-PC interaction. The van der Waals interaction between PC and GGBFS does 

not contribute to change in viscosity and yield stress.  

Typical values of pH for concrete are 12 to 13. This would mean the values of 

Hamaker constants in Figure 3.19 that are within this pH range can be used for simulation of 

flow of cementitious pastes. 

   

 

Figure 3.18. Hamaker constants of cementitious materials in dry air 
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Figure 3.19. Hamaker constants of cementitious materials in water (pH7) and solution of 

sodium hydroxide (pH 8, 9, 11, 13) 

3.5 Friction of Cementitious Materials 

3.5.1 AFM probes and sample preparation 

The AFM probe and sample preparation are similar to those described in Section 

3.4.1. Since friction measurements are to be done by sliding particles against each other, the 

particles may degrade, and the worn material may transfer between the tip and the sample. 

Therefore, images of the probes used were taken with an SEM before and after the friction 

tests to check for the tip wearing or deterioration. There was no deterioration observed in the 

before and after images of the tips used. Fresh tips were used for each test to avoid material 

contamination due to material transfer during testing. 

3.5.2 Friction measurement 

The test method introduced by Ruan and Bushan (1994) using friction force 

microscopy is employed to determine the coefficient of friction between two cementitious 

materials at the micro-scale in the present study. To begin the friction force measurement, the 
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geometry of the probe Lc and ht in equation (2.9) were first determined. Lc was measured 

with an optical microscope while ht was measured using an SEM.  

For the friction tests in dry air, the probe and sample were mounted in the AFM and 

the AFM chamber was closed and purged with N2 gas until it had a RH ≤ 10%. The probe 

then was brought down to the sample until the tip contacted the sample, as shown in Figure 

3.20. The zero deflection set-point and the pull-off deflection was then determined. When the 

tip is pressed by the cantilever against the slide sample, the normal force will be the sum of 

the force exerted by the cantilever and the adhesion force between the tip and the sample. 

The zero deflection set-point will have a normal force that is only due to adhesion. The pull-

off deflection is the amount the AFM cantilever deflects before the tip of the cantilever 

separates from the sample on the slide as the AFM probe is withdrawn away from the 

sample. It measures the adhesive force acting between the probe tip and the sample, which is 

computed from the cantilever pull-off deflection multiplied with the cantilever stiffness. 

For the friction test in fluid environment, the test was started with pH 13. Line scans 

were done on the current solution to obtain friction data. When the line scans were completed 

in the solution, the pH was then decrease to pH 11. The process was repeated until pH 7 

(water) was tested. 

 

Figure 3.20. Schematic of set-up for friction measurement using AFM 
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A line scan was then performed on the sample. The sliding distance for the tip was 5 

µm. The H0 and (∆Η1+∆Η2) at given deflection set-points were recorded. Five readings were 

recorded per deflection set-point. H0, ∆Η1 and ∆Η2 were in units of volts. This was converted 

to nanometer with the AFM z-scan sensitivity. The deflection set-point was varied for an 

increasing normal load, from a set-point less than zero (adhesion regime) to ~100 nN exerted 

by the cantilever. Figure 3.21 shows the increase in normal load with increasing set-point. 

Figure 3.22 shows the increase (∆N1+∆N2) with increasing set-point due to increasing normal 

load and friction force. It can be observed that near the adhesion regime, there is a non-linear 

increase in (∆N1+∆N2). This is due to the large change in contact area at very low normal 

loads. To compare the results with macro-scale coefficient of friction, only the linear part of 

the curve was used in the calculation of the coefficient of friction.  

To calculate the coefficient of friction with equation (2.8), the slope of the curve in 

Figure 3.21  (∆N/∆set-point) and the slope of the curve in Figure 3.22 ( ∆(∆N1+∆N2) /∆set-

point ) are used. Equation (2.8) then becomes  

 1 2

0

( ) set-point

set-point 2
µ

∆ ∆ + ∆ ∆
= =

∆ ∆

N Nf L

N N l .
 (3.11) 

 

 

Figure 3.21. Normal force due to cantilever deflection with increasing deflection set-point 
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Figure 3.22. Normal force changes when probe is traveling parallel with the probe long axis 

with increasing deflection set-point 

 

3.5.3 Micro-scale Friction 

The micro-scale coefficient of friction for different cementitious material 

combinations are given in Figure 3.24. The first material in the labels is the particle at the 

AFM tip and the other is the sample on the slide. The coefficient of friction ranges from 

0.020 to 0.059. It can be observed that coefficient of friction involving FA is high. FA 

against FA has the highest coefficient of friction among the material combinations tested. 

This may be due to the asperities on the surface of the fly ash particles shown in Figure 

3.15c. A schematic drawing of how the surface conditions and asperities of PC and FA tips 

interact with PC, FA and GGBFS particles on slides is shown in Figure 3.23. .  The surface 

features of the interacting particle affects the frictional resistance of the particle to sliding.  

PC and GGBFS particles on a slide were polished flat, thus had small asperities. This surface 

feature offers little resistance to sliding with a PC tip as shown in Figure 3.23. a. In Figure 

3.23. b, the asperities on the surface of FA particles tend to hinder sliding because of their 

hill-like shape, thus resulting in a high coefficient of friction. The additional frictional 

resistance was attributed by Sundararajan and Bhushan (2000) as the ratchet mechanism of 

friction and collision force on the asperities. In the case of FA sliding against PC or GGBFS, 

Figure 3.23. c, the asperities of FA particles collides with the small asperities of PC or 
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GGBFS causing a resistance to sliding greater than PC-PC or PC-GGBFS, but less than FA-

FA. 

 

 

Figure 3.23. Schematic of AFM particle tip sliding against sample on slide; a) PC-PC and 

PC-GGBFS, b) FA-FA, c) FA-PC and FA-GGBFS 

 

The coefficient of friction is plotted against the pull-off force between the tested 

materials in Figure 3.25. It can be observed that the pull-off forces are significantly higher 

for the PC-GGBFS. The pull-off force for the PC-GGBFS ranged from 64.2 to 161.4 nN, 

while the range of pull-off forces for the other cementitious materials was from 5.9 to 40.5 

nN. The pull-off force measures the adhesion force between the tested materials. This force 

will be present during the coefficient of friction measurement. As observed by Bhushan and 

Sundararajan (1998), the measured coefficient of friction may be reduced due to high 

adhesion forces, which may result in the observed low coefficient of friction for PC-GGBFS.  

The coefficients of friction in solution with different pH are given in Figure 3.26. 

There is no significant change in coefficient of friction with change in pH. As shown, the 

coefficient of friction of PC is higher than other cementitious materials tested. The 

coefficient of friction of CFA and CFA with GGBFS is second highest compared to PC, 

which may be due to high average surface roughness given in Figure 3.15. The lowest 

coefficient of friction is from FFA1, which has the lowest average RMS. 
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Figure 3.24. Micro-scale coefficient of friction of cementitious materials in dry air 

 

 

Figure 3.25. Effect of pull-off forces on micro-scale coefficient of friction of cementitious 

materials 
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Figure 3.26. Micro-scale coefficient of friction of cementitious materials in solution 
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CHAPTER 4. RHEOLOGY OF CEMENTITIOUS MATERIALS AT THE       

MACRO-SCALE 

 

4.1 Introduction 

The first part of this Chapter presents the compression and shear behavior of 

cementitious powders at its dry state. At cement manufacturing and concrete ready mix 

plants, cementitious materials are often packed in bags or stored in barrels or silos before 

being transported and distributed. During storage and transport, the bulk materials are 

subjected to fluffing, consolidation, filling into and discharging from containers. The 

compression and shear properties of the cementitious materials as well as their friction with 

contacting walls greatly affect the easy/difficulties of the materials to be handled (Schulze, 

2008). 

For construction, bulk cementitious materials are transported by rail, truck or ship 

from manufacturing plants to ready mix concrete plants or construction sites.  Pressurized air 

through pipe is commonly used for loading and unloading of the transport vehicle (Kosmatka 

et al., 2003). When cementitious materials are passed through a pipe, their flow behavior and 

the material-pipe interaction are crucial. Research has found that factors affecting the flow 

behavior of dry materials include particle stiffness (Campbell, 2006; Aarons and Sundaresan, 

2006), mean particle size, shape and distribution, bulk and particle density (Littman et al., 

1995; Mills, 2004). To ensure proper transportation and avoid blockage, it is required in 

practice that the pipe used shall be flexible and free to vibrate, sufficient pressure shall be 

supplied along the pipe, and sharp bends in the pipe shall be prevented.  

Although a large amount of cementitious materials are used each year, little is known 

with regards to their bulk flow and storage properties. Many problems, such as bridging, 

ratholing, flooding or uncontrolled flow, and caking, have occurred, which negatively impact 

the material production efficiency (Maynard, 2004).  
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The second part of the Chapter presents that rheology of freshly mixed cementitious 

pastes. Cementitious paste in concrete is composed of Portland cement and water, and other 

types of cementitious materials such as fly ash, ground granulated blast furnace slag and 

silica fume and other chemical admixtures. In the fresh state of concrete, the paste fills the 

space between aggregates, suspends the aggregates in place when the concrete is static and 

promotes flow by providing a distance between aggregates and may also serve as lubrication 

between contacting aggregates (Kennedy, 1940; Oh et al., 1999). In hardened concrete, it is 

the matrix that holds the aggregates together.  

Paste in fresh concrete contributes to its workability and rheology, which influences 

concrete placement methods, quality of cast concrete and hardened properties. Rheology 

parameters could be used to evaluate the flowability and compactability of fresh concrete 

(Yen et al., 1999; Gjorv, 1998). Rheology parameters in pastes that are of interest are 

viscosity, yield stress and thixotropy. Factors affecting the rheology of paste include 

concentration of solids, interparticle forces by cohesion and friction, particle size, distribution 

and morphology (Ferraris et al., 2001; Cry et al., 2000; Park et al., 2005).  

The specific surface area and concentration of solids was shown to influence the 

viscosity and yield stress of cement pastes (Vom Berg, 1979). The viscosity and yield stress 

increases with fineness and concentration, which reflects on the dominance of water-cement 

interface in the system. It has also been shown that fly ash improves workability, which has 

been attributed to particle geometry (Rudzinski, 1984). Particle size distribution, density and 

morphology are major factors affecting viscosity (Li et al., 2004). The viscosity and yield 

stress affect the consistency, stability and consolidation of concrete mixtures.   

Thixotropy in cement based materials is mainly attributed to the colloidal interactions 

of cementitious particles (Coussot, 2005); the aggregates in concrete are inert non-colloidal 

particles. Cementitious materials build colloidal structures while at rest, either by 

flocculation or hydration. The colloidal structures are broken by shearing.  The structure 

breaking changes the viscosity of paste during constant shearing, developing a thixotropic 

paste.  Thixotropy of cement base materials is influenced by timescales (Jarny et al., 2005). 

Reversible flocculation and de-flocculation dominates flow at short timescales, while 

irreversible hydration process dominates at large timescales. Some of the influences of 
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thixotropy in concrete construction are formwork pressure, multilayer casting and stability 

(Roussel, 2006).  

4.2 Materials 

Four types of cementitious materials were studied, ordinary Portland Cement (PC), 

Class C Fly Ash (FA), Ground Granulated Blast Furnace Slag (GGBFS) and densified Silica 

Fume (SF). PC is a hydraulic cement composed primarily of calcium silicates. FA, GGBFS 

and SF are supplementary cementitious materials. When used in conjunction with PC, they 

contribute to the properties of the hardened concrete through hydraulic or pozzolanic activity 

or both. The chemical composition, specific gravity (ASTM C188, 2009) and fineness 

(ASTM C204, 2011) of the cementitious materials are given in Table 4.1. The chemical 

composition was obtained by x-ray florescence spectroscopy. PC has the highest specific 

gravity among the material, while the fineness of PC and GGBBS are similar. 

Since the geometry of the materials will have an effect on its bulk density and 

shearing behavior, scanning electron microscope (SEM) micrographs are shown in Figure 4.1. 

PC and GGBFS are angular due to grinding during production. FA has spherical shaped 

particles, which are formed by fusing in suspension of exhaust gases. SF has an irregular and 

rounded shape.  Densified silica fume is an agglomeration of silica fume. Undensified silica 

fume are condensed from vapor and its particles will a size less than one micron (Holland, 

2005).  

The cementitious materials were placed in an oven at 212 ºF for 24 hours and allowed 

to cool in the oven before using in compression and shear testing. The preparation of samples 

in testing boxes and compression and shear testing were done at a relative humidity of 50% 

and temperature of 73±3 ºF.  
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Table 4.1. Chemical components (%), specific gravity and fineness (m2/kg) 

 Material 

 PC FA GGBFS SF 

Na2O 0.1 1.64 0.29  

MgO 3.07 4.87 9.63  

Al2O3 4.24 17.68 8.54  

SiO2 21.16 31.92 36.5 85-97 

SO3 2.63 1.68 0.6  

K2O 0.66 0.43 0.44  

CaO 64.39 30.9 41.1 <1 

Fe2O3 3.07 6.54 0.83  

Others 0.68 4.34 2.07  

Specific Gravity 3.14 2.52 2.95 2.21 

Fineness (m2/kg) 452.7 419.6 455 314.8 

 

 

 

Figure 4.1. SEM micrograph of cementitious powders 

 

4.3 Compression and Cementitious Materials in Dry State 

Prior to performing the compression loading of the cementitious materials, the 

densities of the bulk materials were measured after the samples were prepared for testing. 
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The compression test was to determine the compressibility and stiffness modulus (

cementitious materials. The test was confined and uniaxial. The material was placed in a 

rigid box and was loaded in only one direction

The blended materials were PC with FA, GGBFS or SF. The amounts of FA, GGBFS and SF 

in the blended materials were 20, 40, 60 and 80 % by weight. 

4.3.1 Compression Test Methods

Bulk Density Measurement 

The bulk densities of the cementitious materials were determined using a 

100×100×50 mm rigid box. The bulk density

for compression, prior to loading. 

produced a very compressible sample because the materials were in loose dry powder form. 

The initial deformation of the sample was too high to be measured with an LVDT. To reduce 

the initial compression, the sample was pluviated and consolidated in three layers in th

The consolidation pressure was 4.1 kPa. The sample was then vibrated for one minute with 

4.1 kPa pressure as shown in 

corners was measured. The dimensions were 

 

Figure 4.2. Setup for consolidation and vibration for sample preparation

The bulk density ρb 

divided by its volume. The height of the sample 
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The compression test was to determine the compressibility and stiffness modulus (

cementitious materials. The test was confined and uniaxial. The material was placed in a 

rigid box and was loaded in only one direction. The materials were tested pure and blended. 

The blended materials were PC with FA, GGBFS or SF. The amounts of FA, GGBFS and SF 

in the blended materials were 20, 40, 60 and 80 % by weight.  

Compression Test Methods 

ensities of the cementitious materials were determined using a 

The bulk density is measured after the sample has been prepared 

for compression, prior to loading. Simple pluviation of the cementitious material in the box 

very compressible sample because the materials were in loose dry powder form. 

The initial deformation of the sample was too high to be measured with an LVDT. To reduce 

the initial compression, the sample was pluviated and consolidated in three layers in th

The consolidation pressure was 4.1 kPa. The sample was then vibrated for one minute with 

as shown in Figure 4.2. The sample was then weighed and the height at four 

corners was measured. The dimensions were measured using a caliper. 

 

. Setup for consolidation and vibration for sample preparation

 

 was calculated as the weight of the prepared sample 

e height of the sample have was the average of the heights measured 

The compression test was to determine the compressibility and stiffness modulus (E) of 

cementitious materials. The test was confined and uniaxial. The material was placed in a 

. The materials were tested pure and blended. 

The blended materials were PC with FA, GGBFS or SF. The amounts of FA, GGBFS and SF 

ensities of the cementitious materials were determined using a 

is measured after the sample has been prepared 

Simple pluviation of the cementitious material in the box 

very compressible sample because the materials were in loose dry powder form. 

The initial deformation of the sample was too high to be measured with an LVDT. To reduce 

the initial compression, the sample was pluviated and consolidated in three layers in the box. 

The consolidation pressure was 4.1 kPa. The sample was then vibrated for one minute with 

. The sample was then weighed and the height at four 

. Setup for consolidation and vibration for sample preparation 

was calculated as the weight of the prepared sample Wsample 

was the average of the heights measured 
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at four corners of the box. The width w and length l of the sample were the inner width and 

length of the box.  

 ρ =
× ×

sample

b

ave

W

w l h
 (4.1) 

 

Since the samples tested were composed of one or two types of materials with 

different specific gravities, the amount of voids in the samples gives an indication of the 

degree of packing and the amount a sample may compress. Reduction in bulk volume is 

predominantly reduction in volume of voids Vv (Lambe and Whitman, 1969). The void ratio e 

of a sample can be solved by  

 2 2

2
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ρ ρ ρ

    +
= = + −    
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b OPC water waters

V W W W W
e

G GV
 (4.2) 

 

Vs is the volume of cementitious materials. WPC is the percentage of PC by weight and W2 is 

the percentage of FA, GGBFS or SF by weight. G is specific gravity given in Table 4.1 and 

ρwater is the density of water.  

Compression testing 

The setup for the uniaxial compression test is shown in Figure 4.3. The cementitious 

material to be tested was placed and covered with a rigid box and plate. The interior 

dimensions of the box was 100×100×50 mm. Steel plates were placed on a hanger to produce 

the compressive load. The sample deformation was measured using a Linear Variable 

Differential Transducer (LVDT). The LVDT was set at the center of the sample. An 

increasing compressive load at 6.1, 8.9, 15.2, 27.8 and 52.4 kPa was then placed on the 

sample.  Deformation readings were taken on the LVDT every five seconds. The final 

deformation for the respective load was recorded when there was no change in five 

consecutive readings. After loading to 52.4 kPa, the sample was subjected to a cyclic loading 

of 6.1 kPa to 52.4 kPa. The displacement for each cycle was recorded. The test was stopped 

when there was no significant change between two consecutive cycles.  
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Figure 4.3. 

A stress-strain curve was produced when the sample was loaded comp

shown in Figure 4.4. The sample strain (

of the sample before loading. The three segments in the graph can be described by two 

characteristic behaviors, the normal comp

recompression line (SRL) (Whitlow, 2001).

any previous value on the sample. When the sample was unloaded, it swelled along the SRL 

and when reloaded it compressed along 

was along the NCL, the sample strains from particle rearrangement due to sliding or 

fracturing. The strain due to rearrangement was not recoverable. The portion of strain that 

was recovered and exhibited by

within individual particles as the sample was loaded

rearrangement and fracture of particles in the NCL versus mainly elastic deformation in the 

SRL also explains why the slope of a NCL was less than the slope of a SRL. Thus, the 

sample became behaves stiffer when loads are lower than previous loads it had experienced. 

SRL1 was due to the loading from sample preparation while SRL

loading applied. 

Typical SRL2 of samples is shown in

recompression and swelling, curves a
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. Setup for compression of bulk cementitious materials

 

strain curve was produced when the sample was loaded comp

. The sample strain (ε) was the sample deformation divided by the height 

of the sample before loading. The three segments in the graph can be described by two 

characteristic behaviors, the normal compression line (NCL) and the swelling and 

(Whitlow, 2001). NCL represents loading to stresses higher than 

any previous value on the sample. When the sample was unloaded, it swelled along the SRL 

and when reloaded it compressed along the same path. When the sample was compressed and 

was along the NCL, the sample strains from particle rearrangement due to sliding or 

fracturing. The strain due to rearrangement was not recoverable. The portion of strain that 

was recovered and exhibited by the SRL during unloading was caused by the elastic energy 

within individual particles as the sample was loaded (Makkawi et al., 2006)

rearrangement and fracture of particles in the NCL versus mainly elastic deformation in the 

e slope of a NCL was less than the slope of a SRL. Thus, the 

sample became behaves stiffer when loads are lower than previous loads it had experienced. 

was due to the loading from sample preparation while SRL2 was due to the cyclic 

of samples is shown in Figure 4.5. The graph shows two cycles of 

recompression and swelling, curves a-b-c and c-d-e. The recompression portion of the graph 

Setup for compression of bulk cementitious materials 

strain curve was produced when the sample was loaded compression as 

) was the sample deformation divided by the height 

of the sample before loading. The three segments in the graph can be described by two 

ression line (NCL) and the swelling and 

NCL represents loading to stresses higher than 

any previous value on the sample. When the sample was unloaded, it swelled along the SRL 

the same path. When the sample was compressed and 

was along the NCL, the sample strains from particle rearrangement due to sliding or 

fracturing. The strain due to rearrangement was not recoverable. The portion of strain that 

the SRL during unloading was caused by the elastic energy 

(Makkawi et al., 2006). The 

rearrangement and fracture of particles in the NCL versus mainly elastic deformation in the 

e slope of a NCL was less than the slope of a SRL. Thus, the 

sample became behaves stiffer when loads are lower than previous loads it had experienced. 

was due to the cyclic 

. The graph shows two cycles of 

e. The recompression portion of the graph 
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(a-b and c-d) showed a nonlinear relationship between stress and strain while the stress-strain 

relation in the swelling line was linear, when plotted in the log(σ)-strain axes. There was a 

small amount of unrecoverable strain during recompression and swelling, distances a-c and 

c-e. 

Four parameters were calculated to describe the compression properties of the bulk 

cementitious materials, the compression index C'c, the swell index C's, the recompression 

index C'r and stiffness modulus Es. The compression index is the slope of the NCL shown in 

Figure 4.4. The swell and recompression indices are the slopes of the recompression and swell 

lines in the SRL shown in Figure 4.5, respectively. The stiffness modulus is the ratio of the 

increment in stress to the increment in strain. The amount of compressibility in a given state 

of the cementitious material, normal compression, swell or recompression is proportional to 

the corresponding index, and the stiffness modulus. The formula for C'c, C's and C'r are 

similar. The following equations for the four parameters apply: 
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∆ε is the change in strain from σ2 to σi, where σi is any stress along the appropriate curve. 

For this study, σ2 was 52.4 kPa. To calculate C'c in each sample, σi was 15.2 kPa and ∆ε was 

the change in strain from 27.8 to 52.4 kPa. C'r and C's in each sample were calculated as the 

average from the two hysteresis in Figure 4.5. ∆ε for C'r were εb-εa and εd-εc and ∆ε for C's 

were εb-εc and εd-εe. σi for C'r and C's was 6.1 kPa. Es was the calculated from the swell line 

of SRL2.  
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Figure 4.4. Strain vs. log(stress) curve of cementitious sample under compression loading 

 

 

Figure 4.5. SRL strain vs. log(stress) curve of cementitious sample 

4.3.2 Compression Test Results 

Bulk density results 

The bulk density of the pure cementitious materials and the combination of PC with 

FA, GGBFS or SF are presented in Figure 4.6. Zero percent PC content indicates pure FA, 

GGBFS or SF. The results show that the density of PC with FA does not change with 



www.manaraa.com

64 
 

increasing FA content. The replacement with GGBFS or SF reduces bulk density, with 

greater reduction for SF compared to GGBFS.  

The void ratios of samples computed with equation (4.2) are given in Figure 4.7. The 

void ratio of pure materials PC, GGBFS and SF is greater than one. The amount of voids is 

lowest for FA which may be due to its spherical shape. The amount of voids for GGBFS is 

greater than PC. GGBFS has similar fineness compared to PC, but a smaller specific gravity. 

This would indicate that GGBFS would have a higher angularity and would thus create larger 

voids compared to PC. The densified silica fume SF has the largest amount of voids because 

of the densified particles. 

 

  

Figure 4.6. Bulk density of cementitious materials 
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Figure 4.7. Void ratio of cementitious materials 

 

Table 4.2. Bulk density, void ratio, compression/recompression/swell indices, stiffness 
modulus and coefficient of friction of PC with SF 

PC Content (%) 
ρb 

(kg/m3) 
e C'c 

C'r 
(×1000) 

C's 
(×1000) 

Es 
(MPa) µ 

90 1368.4 1.20 0.234 1.159 0.996 73.206 0.74 

95 1412.3 1.18 0.264 0.801 0.716 52.600 0.75 

 

Compression test results 

The compression, recompression and swell indices and the stiffness modulus of the 

cementitious materials are given in Figure 4.8 to Figure 4.11, respectively. The compression 

index does not change increasing FA content. From the initial condition of PC- FA blends 

having decreasing void ratio with increasing FA content in Figure 4.7 and the trend of 

compression index with increasing FA content, the replacement with FA contributes to good 

packing of particles when loose and when subjected to compressive loads. This may be 

attributed to its spherical shape. There is a significant increase in compression index with 

increasing GGBFS content. This indicates that GGBFS has a large voids when loosely placed 

but is susceptible to packing when subjected to compressive loads. The compression index 
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decreases with increasing SF content. Since the void ratio increases and the compression 

index decreases with increasing SF content, SF inhibits packing whether loosely placed or 

consolidated with compressive loads. This is due to the higher particle size of the densified 

SF compared to the other cementitious materials. 

In storage of cementitious blends, the upper portion of the materials would follow the 

density trends shown in Figure 4.6, however, the deeper part of the materials in silos will be 

more consolidated due to overburden pressure. Since the compression index of PC-FA blends 

do not change, increase in the amount of FA in a blend will give similar densities for the 

same overburden pressure. For PC-GGBFS blends, it will compress less with increasing 

GGBFS and would have lesser density for a given overburden pressure. This may lead to 

greater materials storage for PC-FA blends compared to PC-GGBFS blends. 

The trends of C'r and C's in Figure 4.9 and Figure 4.10 of the cementitious materials 

are similar. The indices are not changed with increasing FA content, slightly increases with 

increasing GGBFS content and significantly increases with SF content. In all cases, C'r is 

slightly higher than C's. This would be due to a slight unrecoverable strain during the 

recompression and swell hysteresis. The amount of elastic energy that can be stored in PC 

and FA are similar. GGBFS can store up to 38% lesser elastic energy compared to PC, while 

SF stores up to 450% lesser elastic energy compared to PC. 

Since the stiffness of the bulk materials is inversely proportional to the swell index in 

equation (4.4),  the stiffness decreases with replacement with GGBFS and SF. The stiffness 

of SF is much less than the stiffness of PC, FA and GGBFS. This is mostly related to the 

poor packing of SF compared to the other cementitious materials.  
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Figure 4.8. Compression index of cementitious materials 

 

  

Figure 4.9. Recompression index of cementitious materials 
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Figure 4.10. Swell index of cementitious materials 

 

  

Figure 4.11. Stiffness modulus of cementitious materials at σ = 52.4 kPa 
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4.4 Shear of Cementitious Materials in Dry State

The shear test was conducted to determine the bulk coefficient of friction (

was by direct shearing at different normal loads. 

the test for compression in Section 

4.4.1 Shear test method 

The setup for the uniaxial compression test is shown in

used was 100×100×50 mm. When a sample was sheared, the lower half of the box moved 

forward while the upper half remained stationary.  The l

motor and the shearing force was measured with a load cell. Three LVDTs were used in the 

setup, two for the vertical displacement and one for the horizontal displacement. The normal 

load was applied with steel plates thr

The samples were consolidated in three layers in the shear box with a pressure of 4.1 

kPa and then vibrated while maintaining the pressure. The two LVDTs for the vertical 

displacement were position above the sample along the sample, 25 mm f

sample vertical displacement was taken as the average of the readings from the LVDTs. The 

LVDT for the horizontal displacement was position in front of the lower portion of the shear 

box. A normal load was then placed on the sample. The 

a sample were 13.1, 26.0 

Displacement and force readings were taken every 15 seconds. The shearing was stopped 

when the lower portion of the box had moved 12.5 mm.

 

Figure 4.12. Setup for direct shear test of bulk cementitious materials
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Cementitious Materials in Dry State 

ear test was conducted to determine the bulk coefficient of friction (

was by direct shearing at different normal loads. The material combinations 

the test for compression in Section 4.3.  

The setup for the uniaxial compression test is shown in Figure 4.12

used was 100×100×50 mm. When a sample was sheared, the lower half of the box moved 

forward while the upper half remained stationary.  The lower half of the box was moved by a 

motor and the shearing force was measured with a load cell. Three LVDTs were used in the 

setup, two for the vertical displacement and one for the horizontal displacement. The normal 

load was applied with steel plates through a hanger.  

The samples were consolidated in three layers in the shear box with a pressure of 4.1 

kPa and then vibrated while maintaining the pressure. The two LVDTs for the vertical 

displacement were position above the sample along the sample, 25 mm from each edge. The 

sample vertical displacement was taken as the average of the readings from the LVDTs. The 

LVDT for the horizontal displacement was position in front of the lower portion of the shear 

box. A normal load was then placed on the sample. The normal loads for three shear tests of 

 and 51.8 kPa. The shearing rate was 1 mm per minute. 

Displacement and force readings were taken every 15 seconds. The shearing was stopped 

when the lower portion of the box had moved 12.5 mm. 

Setup for direct shear test of bulk cementitious materials

ear test was conducted to determine the bulk coefficient of friction (µ). The test 

The material combinations are the same as 

12. The shear box 

used was 100×100×50 mm. When a sample was sheared, the lower half of the box moved 

ower half of the box was moved by a 

motor and the shearing force was measured with a load cell. Three LVDTs were used in the 

setup, two for the vertical displacement and one for the horizontal displacement. The normal 

The samples were consolidated in three layers in the shear box with a pressure of 4.1 

kPa and then vibrated while maintaining the pressure. The two LVDTs for the vertical 

rom each edge. The 

sample vertical displacement was taken as the average of the readings from the LVDTs. The 

LVDT for the horizontal displacement was position in front of the lower portion of the shear 

normal loads for three shear tests of 

kPa. The shearing rate was 1 mm per minute. 

Displacement and force readings were taken every 15 seconds. The shearing was stopped 

 

Setup for direct shear test of bulk cementitious materials 
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The typical increase in shear stress with increase in shearing displacement and normal 

loads for the cementitious materials tested is shown in Figure 4.13. The gradual increase in 

shear stress until it reaches its ultimate shear stress and stays at the peak value is typical of a 

loosely consolidated dry material, Lambe and Whitman (1969). The typical decrease in 

height of the samples tested is shown in Figure 4.14. This occurs due to net effect of large 

numbers of cementitious particles roll about and fall into voids in an initially loose 

arrangement. The change in sample height εh was expressed in terms of the change in height 

∆h and the original height h0 of the sample after the placement of the normal stress, before 

the application of the shearing stress. 

 
0

h

h

h
ε

∆
=  (4.5) 

 

To compute for the bulk coefficient of friction, the peak shear stresses τu were plotted 

against its corresponding normal stress (N) as shown in Figure 4.15. The bulk coefficient of 

friction µ is the slope of the regression line along the three points.  

 ud

dN

τ
µ =  (4.6) 

 

Figure 4.13. Shear stress vs. displacement curve of at increasing normal loads 
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Figure 4.14. Change in height vs. displacement curve at increasing normal loads 

 

 

Figure 4.15. Peak shear stress vs. normal stress of cementitious sample 
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particle interlocking which may contribute to the higher coefficient of friction, while a 

spherical shape makes particles easy to move and pack.  

The coefficient of friction of GGBFS is slightly less than that of PC. This is mainly 

because both are ground and have similar fineness. The increase in void ratio (in Figure 4.7) 

and decreasing bulk coefficient of friction with increase in GGBFS replacement indicate that 

the resistance of the blends to packing with small pressure may also be attributed to other 

factors such as the particle shape or angularity.  The coefficient of friction of SF is greater 

than PC. When SF is combined with PC, the coefficient of friction of the combined materials 

reduces up to 60% replacement (40% PC content) but increases sharply increases after 60% 

replacement. The sudden increase may be due to the larger size of densified SF particles 

compared to PC particles that the interactions between SF particles dominate the shearing 

behavior while PC particles fill the voids between the SF particles. Due to the decreasing 

coefficient of friction with increasing replacement with FA and GGBFS, the dry flowability 

of PC-FA and PC-GGBFS blends will also increase. Only a slight increase in flowability is 

expected with increasing GGBFS, while a substantial increase is expected with increasing 

FA content. 

The change in height of the samples at 12.5 mm shear displacement calculated by 

equation (4.5) is given in Figure 4.17. The change in sample height generally decreases with 

increasing FA, GGBFS or SF content.  The behavior of PC with FA and SF are very similar 

while the decrease of change in height with addition in SF is greater, which is due to the 

difference in particle sizes. 
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Figure 4.16. Macro-scale coefficient of friction of bulk cementitious materials 

 

 

Figure 4.17. Change in height ∆h/h0 of cementitious materials under shear at 12.5 mm shear 

displacement 
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the interfacial shear of sliding particles.  Sliding of bulk materials occurs when particle 

interlocks are overcome by material yield at the points of contact of particles (Bowden and 

Tabor, 1950 and 1964). The yield stress of a material may be approximated by its indentation 

hardness (Whitlow, 2001). Nanoindentation of Portland cement phases indicates hardness 

values of 8.0-10.8 GPa (Velez, et al., 2001). Thus, for a direct shear test with a normal stress 

of 13.1 kPa, the true contact area between particles may be as little as 1.2×10-6 of the 

superficial area. With the small contact areas and very low loads in the AFM micro-scale 

coefficient of friction measurements, contact stresses do not exceed sample hardness, 

minimizing plastic deformation (Bhushan and Sundararajan, 1998). Lack of plastic 

deformation greatly reduces frictional force, making the micro-scale coefficient of friction 

much lower than the macro-scale coefficient of friction. It was shown in by Bhushan and 

Sundararajan that at contact stresses exceeding the material hardness, the coefficient of 

friction increases towards values comparable to those of macro-scale measurements. 

It can also be observed that FA-FA macro-scale coefficient of friction is lower than 

the PC-PC macro-scale coefficient of friction, while the micro-scale coefficient of friction of 

PC-PC is lower than micro-scale FA-FA. This may be attributed to the shape of the particles, 

where FA are spherical and will flow much easier when sheared as a bulk material. In 

rheology or friction of bulk materials are modeled by particle behavior, the micro-scale 

coefficient of friction should be used because particle shape and stiffness have separate 

contributions to the overall macro deformations and stresses (Jones, et al., 2004). 
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Figure 4.18. Micro- and macro-scale coefficient of friction of cementitious materials 

 

4.5 Rheological Properties of Pastes 

This section presents study of the viscosity, yield stress and thixotropy of 

cementitious pastes. The cementitious materials are unary, binary, ternary and quaternary 

combinations of PC, FA, GGBFS and densified SF. Water-to-binder ratios were varied from 

0.35, 0.45 and 0.55. In the analysis of the rheological properties, statistical models were 

developed to determine effects of material addition.  

4.5.1 Paste Rheology Test Methods 

A mixture of cementitious materials (also called binder) and water were prepared to form 

pastes. The water-to-binder ratios (w/b) were 0.35, 0.45 and 0.55, by weight. The binders 

were either unary, binary, ternary or quaternary combinations of cementitious materials. 

Unary pastes were 100% PC or FA or GGBFS with water. Percentages of SF greater than 

60% were too viscous to test, thus, a unary SF paste was not presented. Binary pastes were 

binders with PC and 20, 40, 60 or 80 % FA or GGBFS or SF. When PC was combined with 

SF, the percentages of SF were 5, 10, 20, 40 and 60 %.  Ternary combinations were binders 

with PC and FA-GGBFS mixes. The combinations FA-GGBFS in percent of total 

cementitious were 10:10, 15:15, 20:20, 25:25, 30:30, 10:30, 15:25, 25:15 and 30:10. 

Quaternary combinations were binders with PC and three, five and eight percent SF and 
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10:10, 15:15, 20:20 and 25:25 % FA-GGBFS combinations. The list of cementitious 

materials and respective w/b are listed in Table 4.3. 

 

Table 4.3. Paste mixture proportions 

w/c PC FA GGBFS SF  w/c PC FA GGBFS SF 

Unary      Quaternary     

0.35/0.45/0.55 100     0.35 77 10 10 3 

0.35/0.45/0.55  100    0.35 67 15 15 3 

0.35/0.45/0.55   100   0.35 57 20 20 3 

Binary      0.35 47 25 25 3 

0.35/0.45/0.55 80 20    0.45/0.55 77 10 10 3 

0.35/0.45/0.55 60 40    0.45/0.55 75 10 10 5 

0.35/0.45/0.55 40 60    0.45/0.55 72 10 10 8 

0.35/0.45/0.55 20 80    0.45/0.55 67 15 15 3 

0.35/0.45/0.55 80  20   0.45/0.55 65 15 15 5 

0.35/0.45/0.55 60  40   0.45/0.55 62 15 15 8 

0.35/0.45/0.55 40  60   0.45/0.55 57 20 20 3 

0.35/0.45/0.55 20  80   0.45/0.55 55 20 20 5 

0.35/0.45/0.55 95   5  0.45/0.55 52 20 20 8 

0.35/0.45/0.55 90   10  0.45/0.55 47 25 25 3 

0.35/0.45/0.55 80   20  0.45/0.55 45 25 25 5 

0.45/0.55 60   40  0.45/0.55 42 25 25 8 

0.55 40   60       

Ternary           

0.35/0.45/0.55 80 10 10        

0.35/0.45/0.55 70 15 15        

0.35/0.45/0.55 60 30 10        

0.35/0.45/0.55 60 25 15        

0.35/0.45/0.55 60 20 20        

0.35/0.45/0.55 60 15 25        

0.35/0.45/0.55 60 10 30        

0.35/0.45/0.55 50 25 25        

0.35/0.45/0.55 40 30 30        
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The pastes tested were prepared following ASTM C305 (2011). Immediately after 

mixing, a sample was poured in a 50 mm diameter by 100 mm high cylinder and tested using 

an R/S SST2000 Brookfield rheometer with a V30-15 vane spindle. The vane was 

completely submerged at the center of the cylinder. It was then rotated with an increasing 

shear rate of zero to 100 s-1 in 60 seconds and subsequently decreased to zero s-1 within 60 

seconds. The shear stress for the applied shear rate was recorded.  

The paste viscosity and yield stress were calculated from the down curve of the flow 

curve. The down curve follows a Bingham model. To calculate for the paste viscosity, a 

regression line was made from 20 s-1 to 80 s-1. The slope of the regression line was the paste 

viscosity. The zero intercept of the regression line was the calculated yield stress. The paste 

thixotropy was calculated as the area between the up-curve and down-curve, between the 

strain rates 20 s-1 to 80 s-1. 

4.5.2 Results and Discussions 

In the analysis of the rheology test results, statistical models were developed for 

viscosity, yield stress and thixotropy of binary, ternary and quaternary mixes at w/b of 0.35 

to 0.55. In the statistical models, up to third order variables and interactions between 

cementitious materials and w/b were considered. The final models presented below are those 

with only statistically significant variables. The units of FA, GGBFS and SF are in percent. 

The statistical program JMP (SAS, 2010) was used for model development and analysis. The 

R
2 value for each model determines how well the model approximates the given data. The 

closer the R2 value is to one, the better the prediction ability of the model.  

Binary mixes 

All the models in the binary mixtures have an R2 ≥ 0.94, indicating a very good fit for 

the models. In general, the increase in w/b decreases the measured rheological parameters. 

The results of the binary PC-FA pastes are shown in Figure 4.19. The replacement of PC 

with FA tends to reduce the viscosity, yield stress and thixotropy of pastes. These trends have 

been commonly observed and are attributed to its spherical shape (Ferraris et al., 2001). The 

thixotropy of PC-FA pastes converges at 100% FA at different w/b, which may indicate 

weak colloidal structure. The statistical models for binary pastes of PC and FA are  
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 (4.7) 

 

The models provide average values of viscosity, yield stress and thixotropy as a 

function of supplementary cementitious material replacement for a w/b in the range of 0.35 

to 0.55. Based on the models, viscosity decreases up to 0.010 Pa-s, yield stress decreases 

0.05-0.66 Pa and thixotropy decreases 1.0-26.0 Pa/s for every 1 percent increase in FA 

replacement.  

 

 

Figure 4.19. Viscosity, yield stress and thixotropy of PC-FA pastes 

 

The results of the binary PC-GGBFS pastes are shown in Figure 4.20. The 

replacement of PC with GGBFS tends to increase the viscosity, yield stress and thixotropy of 

pastes. Viscosity increases up to 0.018 Pa-s, yield stress increases up to 0.28 Pa and 

thixotropy increases up to 25.56 Pa/s for every 1 percent increase in GGBFS. Different from 

the decreasing trend results in Park, et al. (2005) that used ‘roughly spherical’ and fine blast 

furnace slag, GGBFS is angular and has a similar fineness with PC. The models for the 

rheological properties of PC-GGBFS binary pastes are as follows:  
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Figure 4.20. Viscosity, yield stress and thixotropy of PC-GGBFS pastes 

 

The results of the binary PC-SF pastes are shown in Figure 4.21. The replacement of 

PC with SF tends to rapidly increase the viscosity, yield stress and thixotropy of pastes. This 

is due to the high specific surface of SF particles when it has dispersed in paste (Ferraris et 

al., 2001). Viscosity and thixotropy increases nonlinearly with increase in SF replacement. 

Yield Stress increases 1.94 to 4.97 Pa for every 1 percent increase in SF replacement. The 

models for the rheological properties of PC-SF binary pastes are as follows: 
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Figure 4.21. Viscosity, yield stress and thixotropy of PC-SF pastes 

Ternary mixes 

The results for the ternary PC-FA-GGBFS pastes are shown in Figure 4.22 to Figure 

4.24 for paste viscosity, yield stress and thixotropy, respectively. The points are result data 

and the surface plot is generated using the model equations. The models for the rheological 

properties of PC-FA-GGBFS ternary pastes are as follows:  
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A w b w b w b FAFA
2  0.97=R

 (4.10) 

 

Viscosity decreases up to 0.15 Pa-s per percent increase in FA, and increases up to 

0.004 Pa-s for every percent increase in GGBFS. Yield stress decreases 0.06 to 1.04 Pa per 

percent increase in FA replacement but increases by 0.20 Pa per percent increase in GGBFS. 

Thixotropy decreases 0.1 to 9.2 Pa/s per 1 percent increase in FA replacement The 

replacement with GGBFS does not have a significant effect on thixotropy of pastes when 

combined with FA. The contribution of FA and GGBFS are significant on viscosity and yield 

stress, while the contribution of FA dominates thixotropy when combined with GGBFS. 
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Figure 4.22. Viscosity of PC-FA-GGBFS pastes 

 

 

Figure 4.23. Yield stress of PC-FA-GGBFS pastes 

 

 

Figure 4.24. Thixotropy of PC-FA-GGBFS pastes 
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Quaternary mixes 

The results of the quaternary PC-FA-GGBFS-SF pastes are shown in Figure 4.25 to 

Figure 4.27 for paste viscosity, yield stress and thixotropy, respectively. The test were such 

that FA was equal to GGBFS, thus FA and GGBFS are in one axis in Figure 4.25to Figure 

4.27 and are presented as (FA,GGBFS) in the models. The rheology models for quaternary 

mixes are as follows: 

 

( ) ( )

( )( ) ( )

( ) ( )

( )( )

2

2

2
0

,                              0.99

  0 ,

6.871 0.039 0.013 22.384

.070 18.244

7 ,                            1.00

,

22.83 2.92 12.09 2615.20

  5.44 20.77

η

σ

− + −

− + −

= + =

+

= + =

−

FA GGBFS w b R

FA GGBFS w b w b

FA GGBFS SF w b R

FA GGBFS w b

SF
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( ) ( )

2

2 2

2381.44

3145.9 19.8 15813.1 18342.0                                     0.88− + −

+

= + =

F w b w b

A SF w b w b R

 (4.11) 

 

Viscosity decreases up to 0.014 Pa-s per percent increase in FA and GGBFS, and increases 

by 0.013 Pa-s per percent increase in SF. Yield stress increases by 0.06 Pa per percent 

increase in FA and GGBFS at w/b of 0.55, but decreases from 0.48 to 1.02 Pa per unit 

increase in FA and GGBFS when w/b is decreased from 0.45 to 0.35. It also increases from 

0.66 to 4.82 Pa per unit increase in SF when w/b is decreased from 0.55 to 0.35. Thixotropy 

increases by 19.8 Pa/s per percent increase in SF. The replacement with FA and GGBFS does 

not have a significant effect on thixotropy when combined with SF. 

 

 

Figure 4.25. Viscosity of PC-FA-GGBFS-SF pastes 
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Figure 4.26. Yield stress of PC-FA-GGBFS-SF pastes 

 

 

Figure 4.27. Thixotropy of PC-FA-GGBFS-SF pastes 

 

4.6 Relating Paste Viscosity to Dry Properties 

Although paste yield stress and thixotropy can be obtained from the rheology tests 

conducted, these are not presented in this section to focus mainly on correlating paste 

viscosity to properties of cementitious materials in their dry state. Yield stress and thixotropy 

are influenced by flocculation of cementitious materials. This phenomenon would not be 

accounted for when correlating the influence of properties of cementitious materials in their 

dry state, whereas viscosity measurements are at a state when flocs have been sheared. 

For comparing paste rheology results with dry properties, the paste was first pre-
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sheared with an increasing strain rate from 0 to 100 s-1 for one minute. The strain rate was 

subsequently reduced from 100 to 0 within one minute. The proportions of water-to-binder 

(w/b) materials were 0.45 and 0.55 by weight. 

The viscosity of the pastes for w/b of 0.55 and 0.45 are shown in Figure 4.28 and 

Figure 4.29, respectively. The viscosity for PC with 5 and 10 % SF are given in Table 4.4. Due 

to the very high viscosity brought by replacement with SF and the limit of the rheometer, 

only up to 20 % SF was measured.  In both cases, the addition of FA decreases viscosity 

while the addition of GGBFS or SF increases viscosity. In all cases, a lower w/b has a higher 

paste viscosity.  

As shown in Figure 4.30, an increase in void ratio (Figure 4.7) relates to an increase in 

viscosity. This indicates that factors that influence the arrangement and packing of particles 

in its dry state also influences paste rheology. These factors may be particle shape, size, 

distribution, coefficient of friction and stiffness. Figure 4.31 shows that a significant change in 

coefficient of friction would influence the viscosity of pastes as in the case of FA 

replacement. With the replacement of FA, there is a decrease in viscosity as coefficient of 

friction decreases. Lesser friction between particles would allow the paste to flow easier. For 

GGBFS replacement, the viscosity seem to decrease with increase in coefficient of friction 

but it should be noted that the change in coefficient of friction is small (less than 10%) and 

that viscosity values overlap for a given coefficient of friction. This would mean that factors 

other than coefficient of friction of GGBFS influence these trends. Figure 4.32 shows 

decreasing paste viscosity with increasing stiffness modulus. A higher stiffness would reduce 

collision times or contact durations between particles, thus reducing viscosity. The strong 

correlation of the coefficient of friction to viscosity compared to stiffness indicates that 

friction has a greater influence on viscosity for pastes with PC and FA, while the strong 

correlation of stiffness to viscosity compared to friction indicates that stiffness has a greater 

influence on viscosity for pastes with PC and GGBFS. The coefficient of friction of dry 

samples with varying GGBFS and SF content and stiffness modulus for dry samples with 

varying FA content does not significantly change, thus, not significantly correlating to 

viscosity. 
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In its dry state, a blended cementitious material with FA may be easier to transport 

through pipes compared to a blended cement with GGBFS due to the decrease in coefficient 

of friction with addition of FA. Since the addition of FA does not change the bulk density of 

the cementitious materials when consolidated, there may be no change in the mass stored of 

blended PC with increasing FA, but the amount of cementitious materials that can be stored 

will decrease with increasing GGBFS addition. Based on the results of paste viscosity, 

addition of FA will increase fresh concrete flowability, while increase in GGBFS will 

improve stability against segregation. Based on the correlation of viscosity with void ratio 

and coefficient of friction, when packing is improved and friction decreases due to blending 

of cementitious materials, paste viscosity would tend to decrease. Based on the correlation of 

viscosity to stiffness modulus, when friction does not significantly change such that it affects 

viscosity, the increase in stiffness modulus would increase paste flowability. 

 

 

Figure 4.28. Paste viscosity at w/b = 0.55 
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Figure 4.29. Paste viscosity at w/b = 0.45 

 

Table 4.4. Viscosity of pastes of PC with 5 and 10% SF (Pa-s) 

PC Content (%) 
w/b 

0.55 0.45 

90 0.205 0.682 

95 0.181 0.529 

 

 

 

Figure 4.30. Viscosity of pastes vs. void ratio 
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Figure 4.31. Viscosity of pastes vs. coefficient of friction 

 

 

Figure 4.32. Viscosity of pastes vs. stiffness modulus 
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CHAPTER 5. DEM SIMULATION OF CEMENTITIOUS MATERIALS 

 

5.1 Introduction 

Cementitious materials testing in dry state were numerically simulated using DEM. 

The platform used is MFiX (Multiphase Flow with Interphase eXchanges). MFiX is a 

general-purpose computer code developed at the National Energy Technology Laboratory 

(NETL) for describing the hydrodynamics, heat transfer and chemical reactions in fluid-solid 

systems, Syamlal, et al. (1993). The following theoretical background is based on the DEM 

formulation for MFiX. The simulations were run on a twelve core Beowulf cluster, 

3.0GHz/core. 

5.2 Theoretical Background 

The soft-sphere model based on the spring-dashpot was first proposed by Cundall and 

Strack (1978), and was adopted here to model the flow of cementitious materials. In the 

model, the particles deform and can have enduring, multi-particle contacts, as opposed to 

hard-sphere model (Allen and Tildesley, 1989) where collisions are binary and instantaneous. 

The soft-sphere model is suitable for dense systems.  Figure 5.1 shows the schematic of two 

particles i and j in contact. The particles have radius Ri and Rj, and linear and angular 

velocities Vi, Vj and ωωωω i, ωωωω j, respectively. The positions of the particles are given by Xi and 

Xj. The distance between the particle centers is Dij. The normal overlap between the particles 

is calculated as 

 
n i j j iR Rδ = + − −X X  (5.1) 

 

The unit vector along the line of contact pointing from particle i to particle j is  

 j i

ij

j i

η
−

=
−

X X

X X
 (5.2) 

 

The relative velocity at the point of contact is  
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 ( ) ( )1 2ij i j i i j j ijL L= − + + ×V V V ω ω η  (5.3) 

 

where Li and Lj are the distance of the contact point from the center of the particles i and j, 

respectively. They are given by  

 

2 2 2

,      
2

j i i j

i j j i i

j i

R R
L L L

− + −
= = − −

−

X X
X X

X X
 (5.4) 

 

 

Figure 5.1. Schematic of two particles i and j in contact 

 

The normal velocity Vnij and tangential Vtij components of the contact velocity are  

 ( )n t,      ij ij ij ij i j ij ij ij ij ij ij ijη η η η η η= ⋅ ≡ − ⋅ = − ⋅V V V V V V V  (5.5) 

 

and the tangent to the plane of contact tij is 

 t

t

ij

ij

ij

=
V

t
V

 (5.6) 

 

The overlap between the two particles is modeled by a system of springs and dashpots 

show in Figure 5.2, in both the normal and tangential directions. The normal and tangential 

stiffness (kn and kt) causes rebound. The dashpots provide dissipation of kinetic energy that 

occurs in inelastic collisions. The dashpot damping coefficients for normal and tangential 

directions are denoted as ηn and ηt, respectively. 



www.manaraa.com

90 
 

 

 

Figure 5.2. Schematic of spring-dashpot system to model particle contacts 

 

The normal and tangential components of the contact force Fij between particle i and j 

at time t are composed of the spring force S

ijF  and dashpot force D

ijF . 

 ( ) ( ) ( ) ( ) ( ) ( ),      S D S D

nij nij nij tij tij tijt t t t t t= + = +F F F F F F  (5.7) 

 

The normal and tangential spring forces are calculated based on the overlap δn given 

in equation (3.1) and δt by  

 ,      S S

nij n n ij tij t tk kδ δ= − = −F η F  (5.8) 

 

The tangential displacement at the initiation of contact is calculated as  

 min ,n

t tij

ij ij

t
δ

δ
 

= ∆  ⋅ 
V

V η
 (5.9) 

 

and the tangential displacement at time t + ∆t is  

 ( ) ( ) ( )( )tt t ij t ij ijt t t t t tδ δ δ η η+ ∆ = + ∆ − + ∆ ⋅V  (5.10) 

 

The damping coefficient η and coefficient of restitution e in the normal direction are 

related by   
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2 2

2 ln

ln

eff n n

n

n

m k e

e
η

π
=

+
 (5.11) 

 

where ( )eff i j i jm m m m m= + . A similar expression can be written for ηt. 

The cohesion model adopted for the DEM simulation is the Hamaker model for van 

der Waals forces. The force between two spherical particles is given by the expression  

 
212

eq

vdW

AR
F

D
=  (5.12) 

 

where ( )eff i j i jR R R R R= +  is the effective radius, A is the Hamaker constant and D is the 

surface-to-surface separation distance between two particles. Equation (5.12) approaches 

infinity as the separation distance approaches zero. The singularity is avoided by introducing 

a “cutoff” distance D0. For separation distances below the cutoff distance, the interparticle 

cohesive force is given by a surface adhesion force (Fad) model  

 2ad eq adF Rπ γ=  (5.13) 

 

where γad is the surface energy per unit area. When asperities are considered, the contact 

radius is reduced to the actual contact radius. This can be 30 percent of Req. 

5.3 Numerical Simulation 

5.3.1 Single Particle Cohesion 

The pull-off force measurement with AFM was simulated using DEM to verify the 

implementation of van der Waals cohesion model given in equations (5.12) and (5.13). The 

results are compared to actual AFM results. The DEM model was composed of three 

particles, and they represented the AFM piezo, the probe cantilever and the attached particle 

tip, respectively, as shown in Figure 5.3. The boundary below the particles is the sample 

surface. The particle that models the piezo is moved downward at 1µm/s until the tip particle 

comes to contact with the sample surface and is move downward further to simulate positive 
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cantilever deflection of an AFM cantilever. The piezo particle is then moved upward for a 

piezo withdrawal motion. The particle diameters and densities are 20e-6 m and 3150 kg/m3, 

respectively. The time increment is ∆t=2.5e-9 s. The stiffness of the model spring particle is 

0.31 N/m, the same as spring constant of the probe used in the actual AFM test. The piezo 

particle and tip particle stiffness are varied to 0.31, 3.1, 31 and 310 N/m to check for 

convergence. This is done because the stiffness of the actual tip particle is much greater than 

the stiffness of the actual probe. The Hamaker constant between the tip particle and the 

sample surface is 0.111e-20 J, which is the calculated Hamaker constant from the AFM test. 

The Hamaker constant between particles is 1.110e-20 J; this ensures that the particles are 

glued together. The inner cutoff distance D0 = 0.165e-9 m. To consider the contact due to 

asperities from the actual AFM experiment, the contact radius for the tip particle was taken 

as 33.2 percent of the particle radius. 

 

 

Figure 5.3. Schematic for AFM pull-off deflection DEM model 

 

Four conditions of the pull-off measurement simulation are shown in Figure 5.4 with 

the typical AFM pull-off force curve. Position a) is the approach while the tip is not yet in 

contact with the sample surface. At this position the three particles towards the sample 

surface at a velocity of 0.0001 cm/s. Once the tip particle contacts the sample surface, its 

velocity is reduced to zero while the piezo particle continues to move without change in 

velocity. Position c) is where the piezo particle moves away from the sample surface at a 

velocity of 0.0001 cm/s. The tip particle continues to be in contact with the surface due to 

adhesion between the tip particle and the surface. At position d), the tip particle had 
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separated from the surface and the three particles are moving 0.0001 cm/s away from the 

sample surface. 

 

 

Figure 5.4. Particle velocity diagrams at different positions in the AFM pull-off simulation 

 

The spring deformation in the DEM model is taken as the change in distance between 

the peizo and tip particles. The simulated force curve with varying piezo and tip stiffness are 

shown in Figure 5.5. The slope of the simulated force curve is lower than the experiment data 

because it includes the deformation of the piezo and tip particles. As the piezo and tip 

particle becomes much stiffer, the DEM force curve converges to the experiment force curve.  

The pull-off deflection from the DEM simulations was also obtained with the 

different particle stiffness. These were plotted against the average pull-off deflection from 

AFM experiments. The results showed that convergence is achieved with increasing stiffness 

of piezo and tip particles while maintaining the stiffness of the model spring particle the 

same as the actual probe stiffness. Based in the results of the simulation, the adhesion 

behavior of single particle contact can be modeled using DEM. The difference between the 

particle radius and asperities contact radii is resolved by considering the contact radius as a 

percentage of the particle radius. This will preserve the actual size and mass of the particle. 
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Figure 5.5. Force curves of actual AFM experiment on PC-PC and DEM simulation. 

 

 
Figure 5.6. Convergence of pull-off deflection simulation 
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5.3.2 Compression Test 

The uniaxial compression experiment discussed in Section 4.3 is simulated with 

DEM. The box width is 10 cm. It is filled to a height of 3.82 cm to model the cementitious 

powder in the box. Pouring particles into the box resulted in a lattice arrangement as shown 

in Figure 5.7. The diameter of the particles is 0.2083 cm. An additional three layers of 

particles were added to model the plate used in loading. The density of the bulk powder 

particles is 2.503 g/cm3. To simulate the increasing load made in the compression 

experiment, the density of the plate particles were increased to 192.7, 281.1, 480.1, 878.2 and 

1655.23 g/cm3. The compressive stress is computed as the total weight of plate particles 

divided by the width of the box and particle diameter. The corresponding compressive strain 

is equal to the change in height divided by the original height of the bulk powder.  

 

 

Figure 5.7. Geometry of compression test using DEM 

 

The stiffness of the particles were varied to k = 1, 20, 40 and 60 GN/m. The plot of 

bulk stiffness (E) vs. particle stiffness (k) is shown Figure 5.8. There is a linear relation 

between E and k; the bulk stiffness increases 2.79 MPa per MN/m increase in particle 

stiffness. The plot of compressive stress vs. compressive strain for the DEM simulation with 

the experimental result for PC compression is shown in Figure 5.9. Based on the relation 

given in Figure 5.8 and the results of the PC compression, the required particle stiffness was 

computed and used for simulating the PC compression. The compressive stress vs. strain is 
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also plotted in Figure 5.9. The simulation curve follows the experiment recompression part 

(Figure 4.5) of the experiment curve.  

Using a particle stiffness k = 40 MN/m, the effect of coefficient of friction on bulk 

stiffness is plotted in Figure 5.10. The range of friction coefficient is 0.01 to 1.0. The bulk 

stiffness increases rapidly with the coefficient of friction when it is increased from 0.01 to 

0.25 and maintains as bulk stiffness between 120 to 122 GPa after 0.25. The increase in 

coefficient of friction provides additional resistance to deformation, thus increasing the bulk 

stiffness. The overall change is 9.2% of the maximum bulk stiffness. 

 

 

Figure 5.8. Relation of model particle stiffness k with measured bulk stiffness E 

 

 

Figure 5.9. Compressive stress vs. strain at different particle stiffness  
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Figure 5.10. Effect of particle coefficient of friction to model bulk stiffness 
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CHAPTER 6. SUMMARY AND CONCLUSIONS 

 

6.1 Summary 

In this study, the rheological properties of cementitious materials have been 

investigated at the micro- and macro-scales. The cementitious materials used were Portland 

cement, fly ash, ground granulated slag and silica fume.  

At the micro-scale, atomic force microscopy was used to study the adhesion and 

friction behavior of the cementitious materials in both dry air and fluid environments. For the 

adhesion study, a method of measurement of Hamaker constant was developed. The adhesion 

forces between the cementitious materials were also measured. For the friction study, the 

coefficients of friction between cementitious materials were measured.  

At the macro-scale, the cementitious materials were studied in its dry state and paste 

form. In its dry state, the compression and shear behavior of bulk materials were studied. The 

effect on compression, recompression, swell, stiffness and coefficient of friction of blended 

cementitious materials were considered. In paste form, the rheological properties of binary, 

ternary and quaternary mixture with w/b of 0.35, 0.45, and 0.55 were measured. The 

influence of supplementary cementitious material replacement was discussed. 

Numerical simulationa were also performed on AFM pull-off force measurement in 

dry air and compression of bulk powders. For the pull-off force measurement simulation 

validates the implementation of van der Waals model to particle adhesion, considering 

asperity contact radius. The bulk compression simulation relates particle stiffness to bulk 

stiffness. 

6.2 Findings 

The major findings of this study are as follows: 

1. Adhesion and Friction at the Micro-scale  

• The method for determining Hamaker constant of cementitious materials contains two 

steps (1) measuring the adhesion force between the tested material and a selected 

probe using atomic force microscopy (AFM) and (2) predicting Hamaker constant of 
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the tested material based on the measured adhesion force and using JKR or DMT 

models. The consistency of results on reference materials with published results 

indicates that the present method is valid and reliable. The method has a resolution 

that can differentiate phases in cement. Sample surface roughness can have a 

significant effect on the adhesion force measurement. To minimize the effect of 

surface roughness, samples shall have an RMS less than 20 nm in a 5µm×5µm 

surface scan. 

• Because of double layer effects, Hamaker constants of materials under a water 

environment cannot be directly measured. Only an effective Hamaker constant can be 

calculated.  

• The adhesion force measurements obtained from AFM are dependent upon the 

accuracy of experimental measurements for the probe stiffness, probe tip radius, pull-

off deflection and cut-off distance. The random errors, or uncertainties, of these 

measurements should be considered in the calculation of the Hamaker constant.   

• Atomic force microscopy can be used for determining the micro-scale friction 

commercially available cementitious materials. The micro-scale coefficient of friction 

of tested cementitious materials ranges 0.020 to 0.059. PC-GGBFS had the lowest 

micro-scale coefficient of friction, while CFA-CFA had the highest. 

• The micro-scale surface properties of cementitious materials may affect the micro-

scale coefficient of friction as demonstrated by the surface properties of CFA 

particles. The micro-scale coefficient of friction of CFA with other cementitious 

materials is higher than the micro-scale coefficient of friction of cementitious 

materials without CFA.  

2. Rheology at the Macro-scale 

• The bulk density of loosely compacted PC is similar to CFA, higher than that of 

GGBFS. Replacing PC (angular particles) with CFA (spherical particles) reduces the 

initial void ratio, while replacing PC with GGBFS (angular particles) increases the 

void ratio of the blended material. 

• Compression behavior of the materials is characterized by the compression, 

recompression and swell indices as well as stiffness modulus. The indices of PC-CFA 
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blends do not change with CFA replacement, while the compression indices of PC-

GGBFS blends increase with GGBFS replacement.  

• The macro-scale coefficient of friction of tested cementitious materials ranges from 

0.56 to 0.75. PC-PC has the highest macro-scale coefficient of friction and CFA-CFA 

has the lowest. The coefficient of friction of PC-CFA and PC-GGBFS blends 

decreases with CFA or GGBFS replacement, which results in increased flowability of 

dry PC-CFA and PC-GGBFS blends. Particle shape plays a significant contribution to 

the macro-scale coefficient of friction. The angular shape has a higher potential for 

particle interlocking which may contribute to the higher coefficient of friction, while 

a spherical shape makes particles easier to move and pack. 

• In cementitious pastes, replacement with CFA decreases rheological parameter 

values, while replacement with GGBFS and SF increases rheological parameters. 

Viscosity and yield stress varies linearly with FA and GGBFS replacement. The 

viscosity and thixotropy increases quadratically, while yield stress increases linearly 

with an increase in SF replacement in binary pastes. Rheological parameters change 

linearly with SF replacement when combined with FA and GGBFS in quaternary 

pastes. Thixotropy is dominated by FA in ternary pastes and is dominated by SF in 

quaternary pastes. 

3. DEM Simulation 

• The force-curve obtained by AFM can be modeled with DEM using the van der 

Waals adhesion force model. The contact due to asperities is incorporated by 

considering the asperities as a percentage of the radius of the contacting particles. 

• The compression behavior and stiffness of bulk cementitious materials can be 

obtained with DEM simulations. The calculated bulk stiffness has a direct relation to 

particle stiffness. Based on the relation, particle stiffness can be obtained for a given 

bulk stiffness.  
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6.3 Recommendations 

The following recommendations are given to improve or extend the present research: 

1. Modern concrete often includes chemical admixtures such as water reducers, viscosity 

and rheology modifiers. These admixtures interact with cementitious materials to change 

the rheological properties of concrete mixtures (ACI 212.3R-10). The method of sample 

and probe preparation and measurement of adhesion and friction forces in fluid 

environments with AFM discussed may be used to study the effects of chemical 

admixtures at the particle level. The change in adhesion and coefficient of friction can be 

determined. The force curves from AFM will also give insight into the change in force 

with respect to distance from the particle. Because of different types of admixtures 

produced and Portland cements from different manufacturers, incompatibilities have also 

been reported (Dodson and Hayden, 1989). Mechanisms of incompatibility of admixture 

to cementitious material may also be studied. 

2. The study of the elastic modulus of cementitious particles will contribute to 

understanding the rheology of cement based materials. The mechanical properties of 

particles play an important role in paste rheology because of the collisions between 

particles during shearing. Indentation at the micro-scale is often used on cement 

hydration products (Mondal, et al., 2006). It may be used to measure the hardness of 

particles and calculation of elastic modulus. In its fresh state, unhydrated cementitious 

materials are abundant and have to be considered.   

3. The DEM simulations conducted in the present study may be improved by increasing the 

number of particles in the simulation. This will provide a better representation of the 

particle interaction in a cement paste system. Because of the irregular shape of Portland 

cement particles, the representation of these particles may be improved by clumping 

(Ashmawy, et al., 2003). 

4. Further work for the current study is the simulation of wet rheology, i.e. pastes, mortar 

and concrete mixtures. MFiX is capable of multiphase simulation, DEM as solid particles 

in a fluid environment. In the simulation of pastes, the DEM particles will represent 

cementitious materials. The stiffness may be the same as those studied in Chapter 5, and 

adhesion parameters will be those measured with the AFM in Chapter 3. The fluid phase 
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will be water. For mortar flow simulations, the solid particles will be fine aggregates and 

the fluid phase will be cementitious paste. The DEM parameters of fine aggregates are 

available in literature (Iwashita and Oda, 1998).  The viscosity of the paste may be taken 

from the results of Chapter 4. For the simulation of concrete flow, the DEM parameters 

for coarse aggregates may be taken from Yan and Ji (2010) and the fluid phase will be 

mortar, where the viscosity may be from taken from Hu (2005).  
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The following are the distribution of data 

pull-off force measurements in dry air with Si
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APPENDIX A. PULL-OFF FORCE MEASUREMENT DATA

the distribution of data for the AFM probe pull-off deflection 

off force measurements in dry air with Si3N4. 
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pull-off force measurements in water with Si
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The following are the distribution of data for the AFM probe pull-off deflection during the 

off force measurements in water with Si3N4. 
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The following are the Hamaker constant and coefficient of friction values of cementitious 

materials in dry air, water and solution with different pH values. 

 
Table A.1. Hamaker constant (×10-20 J) of cementitious materials in different environments 

 Dry air pH7 pH8 pH9 pH11 pH13 

PC/PC 0.111 0.117 0.072 0.149 0.089 0.048 

PC/GGBFS 0.291 0.136 0.076 0.077 0.090 0.240 

CFA/PC 0.742 0.105 0.477 0.412 0.542 0.249 

CFA/GGBFS 0.473 0.073 0.101 0.246 0.169 0.032 

CFA/CFA 0.202 0.220 0.031 0.021 0.014 0.023 

FFA1/FFA1 0.161 0.025 0.021 0.024 0.033 0.044 

FFA2/FFA2 0.118 0.023 0.028 0.010 0.030 0.013 

FFA3/FFA3 0.126 0.064 0.079 0.039 0.021 0.026 

 

Table A.2. Coefficient of friction of cementitious materials in different environments 
 Dry air pH7 pH8 pH9 pH11 pH13 

PC/PC 0.028 0.206 0.182 0.189 0.201 0.172 

PC/GGBFS 0.020 0.044 0.054 0.044 0.037 0.037 

CFA/PC 0.046 0.016 0.017 0.022 0.018 0.044 

CFA/GGBFS 0.059 0.059 0.081 0.082 0.063 0.074 

CFA/CFA 0.050 0.074 0.074 0.067 0.066 0.080 

FFA1/FFA1 0.054 0.020 0.011 0.011 0.013 0.017 

FFA2/FFA2 0.044 0.016 0.015 0.022 0.018 0.038 

FFA3/FFA3 0.082 0.043 0.040 0.041 0.029 0.031 
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APPENDIX B. BULK PROPERTIES OF CEMENTITIOUS MATERIALS IN DRY 

STATE 

The following are the tabulated results of the compression and shear testing of bulk 

cementitious materials in their dry state.  

 

Table B.1. Bulk density of cementitious materials (kg/m3) 

PC Content (%) with FA with GGBFS with SF 

100 1513.6 1513.6 1513.6 

80 1539.5 1418.1 1237.0 

60 1500.4 1384.5 1061.7 

40 1506.9 1306.8 933.1 

20 1509.4 1285.2 808.2 

0 1533.8 1231.9 757.8 

 

 

Table B.2. Void ratio of cementitious materials 

PC Content (%) with FA with GGBFS with SF 

100 1.075 1.075 1.075 

80 0.944 1.186 1.341 

60 0.905 1.211 1.531 

40 0.816 1.313 1.687 

20 0.738 1.323 1.907 

0 0.643 1.395 1.916 
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Table B.3. Compression index of cementitious materials 

PC Content (%) with FA with GGBFS with SF 

100 0.128 0.128 0.128 

80 0.123 0.137 0.099 

60 0.127 0.155 0.085 

40 0.124 0.168 0.079 

20 0.132 0.174 0.079 

0 0.122 0.176 0.062 

 

Table B.4. Recompression index (×1000) of cementitious materials 

PC Content (%) with FA with GGBFS with SF 

100 0.381 0.381 0.381 

80 0.405 0.452 0.563 

60 0.385 0.461 0.921 

40 0.384 0.532 1.311 

20 0.390 0.528 2.055 

0 0.389 0.546 2.693 

 

Table B.5. Swell index (×1000) of cementitious materials 

PC Content (%) with FA with GGBFS with SF 

100 0.350 0.350 0.350 

80 0.371 0.415 0.498 

60 0.353 0.425 0.822 

40 0.332 0.461 1.169 

20 0.354 0.473 1.736 

0 0.340 0.508 2.020 
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Table B.6. Stiffness modulus (MPa) of cementitious materials at σ = 52.4 kPa 

PC Content (%) with FA with GGBFS with SF 

100 150 150 150 

80 141 126 105 

60 148 123 64 

40 158 114 45 

20 148 111 30 

0 154 103 26 

 

Table B.7. Macro-scale coefficient of friction of bulk cementitious materials 

PC Content (%) with FA with GGBFS with SF 

100 0.75 0.75 0.75 

80 0.67 0.73 0.72 

60 0.64 0.72 0.72 

40 0.61 0.73 0.72 

20 0.58 0.70 0.77 

0 0.56 0.72 0.84 
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APPENDIX C. RHEOLOGICAL PROPERTIES OF CEMENTITIOUS MATERIALS 

IN WET STATE 

The following are tabulated values of viscosities, yield stresses and thixotropies of unary, 

binary, ternary and quaternary cementitious pastes. 

 

Table C.1. Viscosity, yield stress and thixotropy of PC-FA pastes 

% Replacement 
Viscosity  

(Pa-s) 
Yield Stress  

(Pa) 
Thixotropy 

(Pa/s) 
w/b 

100 0.18 18.35 0.00 0.35 

80 0.33 32.00 277.23 0.35 

60 0.44 39.38 671.99 0.35 

40 0.64 54.78 1169.31 0.35 

20 0.99 71.13 1860.00 0.35 

0 1.27 91.47 2586.52 0.35 

100 0.10 5.01 0.00 0.45 

80 0.14 6.65 33.22 0.45 

60 0.15 10.99 60.51 0.45 

40 0.20 13.93 119.44 0.45 

20 0.23 21.75 311.79 0.45 

0 0.36 29.63 580.12 0.45 

100 0.06 2.12 0.00 0.55 

80 0.07 2.21 35.86 0.55 

60 0.09 2.71 85.63 0.55 

40 0.06 6.92 86.96 0.55 

20 0.14 7.05 99.10 0.55 

0 0.11 12.54 95.93 0.55 
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Table C.2. Viscosity, yield stress and thixotropy of PC-GGBFS pastes 

% Replacement 
Viscosity  

(Pa-s) 

Yield Stress  

(Pa) 

Thixotropy 

(Pa/s) 
w/b 

100 3.07 120.37 5934.16 0.35 

80 2.03 123.96 4513.00 0.35 

60 1.63 115.27 4047.82 0.35 

40 1.59 107.75 3897.50 0.35 

20 1.40 107.11 3197.22 0.35 

0 1.27 91.47 2586.52 0.35 

100 0.71 42.06 653.05 0.45 

80 0.53 41.93 543.56 0.45 

60 0.56 36.42 610.29 0.45 

40 0.49 37.50 450.84 0.45 

20 0.45 32.80 485.39 0.45 

0 0.36 29.63 371.42 0.45 

100 0.23 11.68 123.36 0.55 

80 0.22 10.72 89.71 0.55 

60 0.22 8.05 106.00 0.55 

40 0.20 8.33 70.46 0.55 

20 0.18 7.78 86.79 0.55 

0 0.11 12.54 71.91 0.55 
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Table C.3. Viscosity, yield stress and thixotropy of PC-SF pastes 

% Replacement 
Viscosity 

(Pa-s) 
Yield Stress 

(Pa) 
Thixotropy 

(Pa/s) 
w/b 

20 2.75 212.58 5557.06 0.35 

10 2.15 201.63 4740.74 0.35 

5 1.73 126.06 4273.17 0.35 

0 1.27 91.47 2586.52 0.35 

40 3.56 161.53 3778.04 0.45 

20 0.97 81.63 1752.93 0.45 

10 0.59 45.40 746.44 0.45 

5 0.45 35.99 446.68 0.45 

0 0.36 29.63 371.42 0.45 

60 2.20 126.20 4421.23 0.55 

40 0.76 82.38 1343.22 0.55 

20 0.26 20.26 212.12 0.55 

10 0.18 12.77 77.73 0.55 

5 0.15 10.79 40.05 0.55 

0 0.11 12.54 71.91 0.55 
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Table C.4. Viscosity, yield stress and thixotropy of ternary mixtures 

PC% FA% GGBFS% 
Viscosity 

(Pa-s) 
Yield Stress 

(Pa) 
Thixotropy 

(Pa/s) 
w/b 

80 10 10 1.046 82.26 923.1 0.35 

70 15 15 0.970 78.35 680.3 0.35 

60 30 10 0.769 62.27 613.0 0.35 

60 25 15 0.860 64.08 709.2 0.35 

60 20 20 0.965 71.82 594.9 0.35 

60 15 25 1.070 81.73 765.8 0.35 

60 10 30 1.170 93.29 810.6 0.35 

50 25 25 0.893 68.21 614.7 0.35 

50 25 25 0.891 69.12 689.2 0.35 

40 30 30 0.937 64.07 705.6 0.35 

40 30 30 0.832 61.24 560.4 0.35 

80 10 10 0.287 19.68 236.9 0.45 

70 15 15 0.294 22.79 126.4 0.45 

60 30 10 0.217 15.57 186.3 0.45 

60 25 15 0.223 17.30 198.3 0.45 

60 20 20 0.279 18.63 171.8 0.45 

60 15 25 0.283 18.62 298.8 0.45 

60 10 30 0.388 25.85 186.4 0.45 

50 25 25 0.283 20.56 151.8 0.45 

40 30 30 0.248 18.64 159.5 0.45 

80 10 10 0.113 6.62 71.2 0.55 

80 10 10 0.102 6.98 60.6 0.55 

70 15 15 0.101 5.72 29.4 0.55 

70 15 15 0.115 6.17 79.5 0.55 

60 30 10 0.092 3.97 23.7 0.55 

60 25 15 0.097 3.43 45.1 0.55 

60 25 15 0.106 5.36 65.1 0.55 

60 20 20 0.084 5.51 87.8 0.55 

60 20 20 0.102 5.59 23.3 0.55 

60 15 25 0.091 7.02 58.5 0.55 

60 15 25 0.116 6.55 34.7 0.55 

60 10 30 0.119 8.35 74.6 0.55 

50 25 25 0.095 4.94 52.2 0.55 

40 30 30 0.096 5.25 70.3 0.55 
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Table C.5. Viscosity, yield stress and thixotropy of quaternary mixtures 

PC% FA% GGBFS% SF% 
Viscosity 

(Pa-s) 
Yield Stress 

(Pa) 
Thixotropy 

(Pa/s) 
w/b 

77 10 10 3 1.245 105.39 253.3 0.35 

67 15 15 3 1.017 101.17 494.0 0.35 

57 20 20 3 1.057 93.97 84.3 0.35 

47 25 25 3 0.922 82.72 265.9 0.35 

77 10 10 3 0.421 30.96 362.2 0.45 

75 10 10 5 0.504 35.71 397.3 0.45 

72 10 10 8 0.524 41.86 401.1 0.45 

67 15 15 3 0.392 27.75 259.0 0.45 

65 15 15 5 0.425 31.46 358.0 0.45 

62 15 15 8 0.497 43.55 443.0 0.45 

57 20 20 3 0.385 26.73 325.7 0.45 

55 20 20 5 0.396 32.64 347.9 0.45 

52 20 20 8 0.474 42.12 460.2 0.45 

47 25 25 3 0.398 28.75 271.5 0.45 

45 25 25 5 0.393 31.47 292.7 0.45 

42 25 25 8 0.467 40.89 417.7 0.45 

77 10 10 3 0.116 8.08 65.2 0.55 

77 10 10 3 0.132 8.00 84.9 0.55 

75 10 10 5 0.166 11.32 148.0 0.55 

72 10 10 8 0.186 12.74 160.8 0.55 

67 15 15 3 0.120 8.17 28.8 0.55 

65 15 15 5 0.163 8.08 163.2 0.55 

62 15 15 8 0.160 10.40 208.6 0.55 

57 20 20 3 0.129 6.67 62.9 0.55 

55 20 20 5 0.138 10.32 128.4 0.55 

52 20 20 8 0.164 10.92 71.0 0.55 

47 25 25 3 0.124 7.45 49.8 0.55 

45 25 25 5 0.130 9.53 94.2 0.55 

42 25 25 8 0.159 10.48 98.4 0.55 
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